发布单位:台北市立天文科学教育馆 观赏方式:肉眼观赏 双筒望远镜辅助观赏 需以口径10公分(4吋)以上的天文望远镜观赏 可拍照 ★★★

  当月球在背景星空中移动时,不时会通过远方星体的前方,这种现象称作月掩星。10月12日入夜后不久,月球将会遮掩位于人马座中的恒星斗宿一,届时月龄6.7的眉月边缘处附近可见亮度约3.2等的斗宿一。

  以台北地区的发生时间为例,10月12日晚间19:33,斗宿一将从月球暗缘掩入,20:42从亮缘复出。掩入时的仰角约29度,可以挑选东方低空无遮蔽处以观察,欲欣赏的民众可以提早五至十分钟开始准备。

  不同地区月掩斗宿一的时间,可参考国际掩星组织The International Occultation Timing Association预报。(编辑/台北天文馆虞景翔)

2021年10月12日月掩斗宿一(人马座φ星)示意图。
2021年10月12日月掩斗宿一(人马座φ星)示意图。以上示意图由Stellarium软体产生。

发布单位:台北市立天文科学教育馆

妮可·奥利维拉 (Nicole Oliveira)

  当妮可·奥利维拉(Nicole Oliveira)刚学会走路的时候,她已经会举起双臂指向星星。现在这名年仅8岁的巴西女孩被认为是世界上最年轻的天文学家,她参与了美国太空总署(NASA)的一个小行星搜寻项目,加入国际研讨会,与世界顶尖的太空和科学界成员会面。

  这个名为小行星猎人的科学项目,旨在让年轻人有机会进行自己的太空探索,从而让它们了解科学,在妮可的房间里贴满了太阳系的海报、小火箭和星际大战的人物模型,她在电脑前看着两个大屏幕工作,并且在这期间已经发现了18颗小行星。

妮可正在使用专业的天文软体分析影像的画面。
▲妮可正在使用专业的天文软体分析影像的画面。

  如果她的发现得到证实(这可能还需要几年的时间),妮可将打破18岁意大利人路易吉·桑尼诺(Luigi Sannino)的纪录,成为世界上最年轻的正式发现小行星的人。在巴西著名的私立学校任职,同时也是妮可的天文学老师说:「她真的很有眼光,她一看到图像就立刻指出先前同学们甚至是老师怀疑是小行星的目标,最重要的是,她与其它孩子们分享她的知识,为科学传播做出贡献。」而在2021年年初,妮可拿到了该校的奖学金并举家搬迁到距离她们原住处1000公里的地方。

  妮可的母亲在妮可两岁的时候就听到她向天空举起双臂要求:「麻麻,给我一颗星星。」当时她还在做家庭手工,接着在她四岁生日的时候向家人要一台望远镜作为生日礼物时,母亲明白她对天文学的热情是认真的,尽管当时她的母亲并不晓得什么是「望远镜」。

  妮可非常想要一台望远镜,她甚至告诉她的父母她愿意用往后一生的所有生日派对来交换这一请求,然而这对一个一般的巴西家庭来说,这礼物还是太贵了,最终在妮可七岁的时候,才跟家中的所有亲友一起凑钱买给她。

  在一般小孩还在上小学的年纪,妮可报名参加了一门天文学课程,该课程原先的年龄限制为12岁,为此,学校破例让她参加,在她的youtube频道上,妮可采访了一些有影响力的人物,譬如巴西天文学家迪利亚·德梅洛(Duilia de Mello),该科学家曾参与过超新星SN 1997D的发现,全程均为巴西官方语言,葡萄牙文。

  关于妮可自己的抱负,她希望能成为一名航天工程师,去那里建造火箭,到佛罗里达州NASA的肯尼迪航天中心看看他们的火箭。(编译/台北天文馆技佐许晋翊)

资料来源:Science Alert

发布单位:台北市立天文科学教育馆

  天文学家对富含金属的近地小行星(NEA)非常有兴趣,因为非常少见,若存在这种小行星,未来或许能开采上面的铁、钴、镍等金属。亚利桑那大学团队研究近地小行星1986 DA和2016 ED85富含金属,因为它们的光谱特征与太阳系中最大的富含金属小行星灵神星(16 Psyche)非常相似。灵神星位于主小行星带,可能是最大的M型小行星,它也是NASA在2022年8月发射太空船研究的目标。

  团队表示:他们使用位于夏威夷NASA红外望远镜(IRTF)观测,分析表明这两颗NEA的表面都含有85%的金属,如铁和镍,另外15%是硅酸盐,类似于石铁陨石。这两颗小行星大小约50米,根据成分和轨道推论,起源可能在主小行星带的4个小行星家族,恰好是已知几个最大金属小行星(包括灵神星)所在区域。团队在论文中不但讨论这两颗近地小行星的起源与成分,还探讨1986 DA的采矿潜力,发现小行星上可能存在的铁、镍和钴的数量将超地球可开采的储量。(编译/台北天文馆研究员李瑾)

预定2022年8月发射的灵神星任务。图片来源:NASA
预定2022年8月发射的灵神星任务。图片来源:NASA

资料来源:Science Daily

发布单位:台北市立天文科学教育馆

  UNLV(内华达大学拉斯维加斯分校)的研究人员可能已经确定了第一颗环绕三颗恒星运行的行星。

GW Orionis的图像,这是一个三星系统,其周围的尘埃环上有一个神秘的缺口。天文学家假设,在这个缺口中存在一颗巨大的行星,这将是有史以来发现的第一颗围绕三颗恒星运行的行星。左图由ALMA望远镜提供,显示了圆盘的环状结构,最内环与圆盘的其余部分分离。右图的观测结果显示了在圆盘其余部分的最内环的阴影。
  图说:GW Orionis的图像,这是一个三星系统,其周围的尘埃环上有一个神秘的缺口。天文学家假设,在这个缺口中存在一颗巨大的行星,这将是有史以来发现的第一颗围绕三颗恒星运行的行星。左图由ALMA望远镜提供,显示了圆盘的环状结构,最内环与圆盘的其余部分分离。右图的观测结果显示了在圆盘其余部分的最内环的阴影。

  不像我们的太阳系,是由一颗孤立的恒星所组成的系统。一般认为,宇宙中一半以上的恒星系统,例如天文学家观察到的这一新奇现象的GW Ori(金牛T型前主序分级三星系统),是由两颗或两颗以上的恒星因相互引力作用所组成。但是还没有发现绕三颗恒星(环绕三重轨道)运行的行星。

  利用阿塔卡玛大型毫米及次毫米波阵列(ALMA)望远镜的观测,UNLV的天文学家分析了在这三颗恒星周围观测到的三个尘埃环,这些尘埃环对形成行星至关重要。

  然而,他们在环盘上发现了一个巨大且令人费解的缺口。

  研究小组调查了不同的起源,包括间隙是由三颗恒星的引力扭矩造成的可能性。但在构建了GW Ori的综合模型后,他们发现更有可能、更吸引人的解释是,有一颗或多颗大质量行星的存在(本质上与木星类似)。该论文的第一作者Jeremy Smallwood说,气体巨行星通常是恒星系统内形成的第一颗行星,紧随其后的是像地球和火星这样的类地行星。

  这颗行星本身是看不见的,但是皇家天文学会月刊上九月份的一项研究强调了这一发现。ALMA望远镜预计将在未来几个月进行进一步的观测,将为这一现象提供直接证据。(编译/台北天文馆吴典谚)

资料来源:Phys.org

发布单位:台北市立天文科学教育馆

  由欧洲和日本合作的水星探测太空船「贝皮可伦坡号」(BepiColombo)传回第一张水星北半球的图像,包括大型陨石坑和数十亿年前被熔岩淹没的区域,这是人类第3度探索水星。

水星北半球的部分影像
  影像为水星北半球的一部分,包括被熔岩淹没的Sihtu Planitia。比周围环境更光滑、更明亮的圆形区域是Calvino陨石坑周围平原的特征,这些平原被称为Rudaki平原。此外,还可以看到166公里宽的Lemontov陨石坑,它看起来很亮,因为它包含称为「hollows」的水星独有的特征,挥发性元素在此处逃逸到太空。(Image credit: ESA/BepiColombo/MTM, CC BY-SA 3.0 IGO)

  这个欧洲和日本合作的水星探测太空船,2018年10月20日由亚利安5型火箭(Ariane 5)搭载发射升空,展开为期7年、长达90亿公里的漫长航程。贝皮可伦坡号1日于美东时间晚上7点44分进行6次飞越水星中的第一次飞越,在距离水星约1,502英里(2,418公里)时,使用黑白导航相机拍摄了第一张水星照片。据欧洲太空总署(ESA)表示:就在10分钟前,美东时间晚上7点34分,BepiColombo最接近水星,距离124英里(200公里)的范围内经过,可惜是背光面,不适合拍摄。

  因为水星是太阳系中距离太阳最近、体积最小的行星,为避免被太阳强大的引力卷入,贝皮可伦坡号采用椭圆形、复杂的航行路径,预计将会有6次飞越水星,并于2025年12月5日飞抵水星轨道,届时将会释出两具探测器,进行水星的表面与磁场探测。

  水星是除了地球之外,唯一拥有磁场绕太阳运行的岩石行星,磁场是由液体核心产生,由于水星体积较小,水星的核心应该已经冷却和固化。水星表面呈现极端现象,白天温度高达摄氏约430度,夜间则为超冰冻的摄氏零下180度。

  欧洲太空总署表示,贝皮可伦坡号的探测任务将研究水星的所有层面奥秘,从水星核心至其表面、磁场以及外逸层,以深入了解这颗最靠近太阳的行星起源和演化。

  这项耗资7.5亿美元的BepiColombo任务将从核心到表面,研究水星的各个层面,包括两个不同的轨道飞行器。欧洲太空总署的贡献是水星行星轨道器从上方研究行星,而日本宇宙航空研究开发机构(JAXA)建造的水星磁层轨道器将研究行星的磁场、等离子体环境和尘埃。(编译/台北天文馆刘恺俐)

资料来源:Science Alert

发布单位:台北市立天文科学教育馆 观赏方式:以肉眼观赏即可 可拍照 ★★

  十月天龙座流星雨(DRA,过去曾非正式称为贾可比尼流星雨)是中小型流星雨,国际流星组织(IMO)预测今年极大期在10月9日2时左右,ZHR约5至10。其母体源是21P/贾可比尼·秦诺彗星(Comet Giacobini-Zinner)。

  十月天龙座流星雨的特点是偶有数量突然爆发的现象,上次发生在2018年,爆发时数量暴增为每小时达150颗;再前一次2011年更高达300颗,此外此流星移动速度特别慢,仅每秒20公里。今年极大期接近眉月,观察条件极好。此外,其辐射点在日落后仰角最高,因此,上半夜是最佳的观赏时间。(编辑/台北天文馆研究员李瑾)

十月天龙座流星雨辐射点

2020年广东省中小学生天文知识竞赛试题(低年组)

注意事项:
1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。
2、选择题全部为单项选择,考生直接在试题页面中点选一个最接近正确的答案,答错不扣分。
3、总分100分,每题2分,考试时间100分钟。
4、本场考试允许使用不具编程功能的计算器。
5、考试过程中不得切出考试页面,否则平台将自动收卷。
6、比赛结果在广东天文学会网站和微信公众号公布。

Part 1. 天文热点

1. 我国首个自主发射的火星探测器“天问一号”计划于何时入轨火星?(  )
A. 2020年12月底左右
B. 2021年2月底左右
C. 2021年5月中左右
D. 2022年7月底左右

2. 我国嫦娥五号探测器在2020年何时发射升空?(  )
A. 12月24日  B. 12月7日
C. 11月24日  D. 11月28日

3. 2020年的诺贝尔物理学奖分别颁发给罗杰·彭罗斯、莱因哈特·根策尔和安德烈娅·盖兹。其中彭罗斯获奖的理由是“发现黑洞形成是广义相对论的一个预言”,那根策尔和盖兹获奖的理由是?(  )
A. 发现银河系中心的超大质量致密天体
B. 发现第一颗环绕类太阳恒星运动的系外行星
C. 验证了引力波的存在
D. 发现了一种测量宇宙大尺度结构的探针

4. 以下哪所高校在2020年正式成立天文系?(  )
A. 香港科技大学
B. 贵州大学
C. 中山大学
D. 广州大学

5. 2020年7月,一颗“黑马”彗星亮度达到2等以上,吸引了很多爱好者拍摄。这颗彗星是?(  )
A. C/2019 Y4 (ATLAS)
B. C/2020 F8 (SWAN)
C. C/2020 F3 (NEOWISE)
D. C/2019 U6 (Lemmon)

6. 关于2020年6月21日的日环食,下列哪个地点位于环食带之外?(  )
A. 纳木错   B. 武汉
C. 厦门    D. 泸州

7. 2020年4月24日是我国首个人造卫星“东方红一号”成功发射_______周年。(  )
A. 40 B. 50 C. 60 D. 70

8. 北京时间2020年10月21日,OSIRIS-Rex(冥王号)探测器对小行星_______进行了首次采样。(  )
A. 龙宫    B. 贝努
C. 糸川    D. 灶神星

9. 2019年年底,一颗本来位列全天前20亮星的恒星亮度持续下降,甚至一度跌出前20亮星排名。2020年年初,它的亮度又恢复了。这颗恒星是?(  )
A. 参宿四   B. 参宿七
C. 毕宿五   D. 北河二

10. 以下哪个天象在2020年11月出现?(  )
A. 水星西大距 B. 木星冲
C. 金星东大距 D. 土星合木星

Part 2. 基础知识

Ⅰ. 请回答以下10道独立的小题。

11. 地方平太阳时12时,当地的太阳时角读数(  )
A. 大于0时
B. 小于0时
C. 正好0时
D. 上述三个选项都有可能

12. 环状星云的中心有一颗?(  )
A. 中子星   B. 红巨星
C. 白矮星   D. 黑矮星

13. 一位在珠三角的同学在他生日那天的北京时间22:00看到北落师门上中天,这位同学最可能在哪月生日?(  )
A. 1月 B. 4月 C. 7月 D. 10月

14. 狮子座β的中文名叫?(  )
A. 轩辕十二  B. 贯索一
C. 五帝座一  D. 王良四

15. 用一台25.4厘米口径的牛顿式反射望远和市面常见的天文CMOS/单反,在极限星等2.5等左右的城市里进行天文摄影。下列情况中最不可能的是?(  )
A. 拍到火星的两颗卫星
B. 拍到参宿四表面的星斑
C. 拍到国际空间站
D. 拍到土卫六

16. 超新星SN 1006是在哪一年爆发的?(  )
A. 公元1006年
B. 公元1054年
C. 公元1987年
D. 公元2010年

17. 夏威夷的莫纳克亚山是天文学的“圣地”之一。以下哪个望远镜不是架设在莫纳克亚山上?(  )
A. 凯克望远镜 I/II
B. 甚大望远镜
C. 昴星团望远镜
D. 双子望远镜(北)

18. 在天王星的中纬地区,出现“昼夜变化”现象的主要原因是?(  )
A. 天王星自转 B. 天王星进动
C. 天王星公转 D. 天卫一公转

19. 下列四个天体中,地表平均温度最高的是?(  )
A. 月球    B. 水星
C. 金星    D. 谷神星

20. 一台折反射望远镜物镜口径200mm,焦距2800mm,目镜焦距20mm,它现在的放大率是?(  )
A. 140倍   B. 200倍
C. 14倍     D. 10倍

Ⅱ. 本部分包含第21-25小题。请在下面给出的备选答案中,选取最合适的答案填入下图中带题号的框里。每个备选答案在本部分中最多使用1次。

太阳结构简图

①光球层;②色球层;③日球层;④差旋层;⑤电离层;⑥对流层;⑦辐射层;⑧太阳风顶

21. A. ① B. ③ C. ⑥ D. ⑦ (  )
22. A. ① B. ② C. ③ D. ⑧ (  )
23. A. ④ B. ③ C. ② D. ① (  )
24. A. ④ B. ⑤ C. ⑥ D. ⑦ (  )
25. A. ⑤ B. ⑥ C. ⑦ D. ⑧ (  )

Part 3. 观测与应用

Ⅰ. 日常观测

  某天文社的成员们准备组织一次流星雨观测,观测日期定在流星雨极大前后两天内。社团干部准备让社员们在上半夜观测时辨认天空中的亮星与主要星座,并印发了图1-A的星图供社员们实时对照。星图对应的是北京时间11:30 AM观测地的星空,此时观测地已入夜。请结合上述信息回答26-31小题。

北京时间11:30 AM观测地的星空
图1-A 北京时间11:30 AM观测地的星空

26. 星图中的哪颗亮星是行星?(  )
A. A星 B. B星 C. C星 D. D星

27. 星图中虚线框框选的区域主要属于?(  )
A. 海豚座   B. 仙后座
C. 白羊座   D. 巨蟹座

28. 社团组织观测的流星雨最可能是?(  )
A. 双子座流星雨
B. 英仙座流星雨
C. 宝瓶座η流星雨
D. 白昼白羊座流星雨

29. 社团所选的观测点最可能是下面哪一项?(  )
A. 伦敦(东经0.1度,北纬51.3度)
B. 吉布提(东经42.2度,北纬11.1度)
C. 阿鲁巴(西经70度,北纬12.3度)
D. 火奴鲁鲁(西经157.9度,北纬21.3度)

30. 观测点当晚下半夜,社员们不能观测到下列哪个天体?(  )
A. M44 B. M57 C. M81 D. M45

31. 在该地观测流星雨时,以下哪项没必要做?(  )
A. 准备好红光照明灯具,避免在观测场地用白光照明
B. 禁止在观测场地奔跑嬉戏
C. 不要在进行标准观测的同学附近大声聊天
D. 穿好秋裤和厚衣服,做好御寒措施

Ⅱ. 火星探测
请根据下面的科普文章与你所知道的信息,回答32-38小题。

  十七世纪,望远镜问世。但在此后的三百多年里,人类主要借助火星冲(日地火近似呈一条直线)这样的“自然窗口”才能更清楚地看到火星表面形貌。在每26个月一次的火星冲附近,火星可以达到离地球最近的位置,许多火星表面地图,都是天文学家们基于火星冲时期的观测绘制的。
  1840年,德国天文学家约翰·海因里希·冯·马德勒和威廉·比尔发布了第一张完整的火星地图,这也是第一张用经纬度标注地球以外行星的地图:火星的0度经线被定义在小型撞击坑艾利-0所在之处。
  此后三十年间,也有各种版本的火星地图陆续问世,但最终一统江湖的,还是时任意大利布雷拉天文台台长的乔凡尼·斯基亚帕雷利基于1877年火星大冲时期的观测绘制的火星地图。地图中使用的诸多火星典型地貌命名被后人广泛采纳,沿用至今。
  似乎一切都在向着越来越好的方向发展,彼时的人类虽然装备有限,但依然在一点一点增进对火星的了解。只是,谁也不知道为啥这路走着走着就走歪了。
  从彼时的权威人士乔凡尼·斯基亚帕雷利开始,一些天文学家认为自己通过望远镜在火星表面看到了越来越多“线性沟槽”。在此后的近百年里,人们开始相信火星表面确实“阡陌交通、沟壑纵横”,这些“沟槽”是火星人为灌溉而建造的“运河”。
  于是,这些压根不存在的“火星沟槽”又让人们与火星表面的真实形貌渐行渐远,也让“火星运河”和“火星人”的错误观念一度深入人心。有机会蒙酱再和大家展开聊聊这段“火星运河荒唐史”。
  直到探测器时代来临,这些迷雾才终于被无可争议的观测事实所拨开。而我们的故事,就是从这里开始的。
  如果说望远镜的发明“升级”了人类的肉眼,那探测器的登场则为人类的凡胎插上了翅膀。
  和“想要近距离看清火星”的望远镜时代相似,想要“近距离探测火星”,依然需要等待每26个月一次的“窗口期”,只不过,这次的窗口期从“火星冲”这样“距离上的最近”(观测窗口),变为了让探测器最节省燃料的“能量上的最近”(发射窗口)。

火星探测

  每当火星相对于太阳的位置领先于地球44度角左右的时候,从地球发射的探测器经过一个椭圆轨道(也就是“地火转移轨道”)后刚好会在几个月后与火星自然相遇,这样的时机每26个月出现一次。改编自:NASA

  在1964年的火星发射窗口里,NASA一口气先后发射了孪生机水手3号和4号。11月5日发射的水手3号,在发射阶段就遇到了一箩筐问题:探测器没能完全从头锥中弹出、太阳能板没能展开、电池耗尽……最终发射失败。
  但正是这些问题的发现为弟弟水手4号走向人生巅峰铺平了道路。仅仅在23天后的11月28日,修复了所有已知问题的水手4号顺利发射,又在8个月后成为了人类第一个飞掠火星并传回火星照片的探测器。
  水手4号共拍摄并传回了22张火星南半球的照片,让人类第一次近距离看到了火星表面的样子。它还对火星大气、磁场和空间环境做了初步探测。水手4号的探测结果基本打破了人类对“火星人”的幻想:相比于地球,火星大气稀薄,表面像月球那样撞击坑遍布。这里荒凉而沉寂,没有发现任何支持火星人这样的复杂智慧生命存在的证据。

(节选自《火星探测六十年:一切过往,皆为序章》,作者haibaraemily)

32. 世界多个航天机构趁着今年的发射窗口发射了火星探测器,这不包括以下哪个国家或机构的探测器?(  )
A. 中国   B. 美国
C. 阿联酋  D. 欧洲航天局

33. 之所以说2020年是火星探测器的发射窗口,是因为?(  )
A. 2020年出现火星冲,冲日前后火星离地球很近,探测器飞行距离短,更省燃料也更快到达
B. 2020年的某一段时间,火星相对太阳的位置将适当超前于地球,使探测器能以相对节省燃料的轨道飞抵火星
C. 2020年火星过远日点,火星到地球的距离比平常更近
D. 2020年火星、地球和太阳的相对位置可让探测器途中通过引力弹弓效应加速,更快地到达火星

34. 火星冲和火星发射窗口都是约26个月出现一次,这个周期刚好是?(  )
A. 火星和地球的会合周期
B. 火星的公转周期
C. 火星和探测器的会合周期
D. 地球和探测器的会合周期

35. 文中提到,天问一号等探测器会以椭圆轨道飞行至火星轨道上。第四届万维望远镜宇宙漫游制作大赛获奖作品《卫星的变轨》也简单地描述了这一变轨的过程。以下哪个天体位于这条椭圆转移轨道的一个焦点上?(  )
A. 太阳
B. 火星
C. 地球
D. 以上答案皆不正确

36. 上述椭圆轨道的周期约为?(  )
A. 1.8年   B. 1.4年
C. 0.7年   D. 0.5年

37. 下列说法中最不准确的一项是?(  )
A. 如果不考虑成本和操作难度,理论上任何时刻都有合适的轨道让火星探测器到达火星
B. 我们可以让飞行器以双曲线轨道前往火星
C. 文中提到的地火转移轨道是飞行时间最短的轨道方案之一
D. 沿文中的转移轨道到达火星轨道的探测器,需要经过速度调整才能被火星俘获

38. 近年的火星探测为我们带来了很多关于火星的新认知,行星科学家们甚至还发现,火星地表下很可能还存在液态水。上述发现是基于分析哪个火星探测器的数据得到的?(  )
A. 好奇号  B. 机遇号
C. 天问一号 D. 火星快车

Ⅲ. 伽利略卫星

  某天文社的社员打算以《利用伽利略卫星测定木星质量》为题开展研究性学习。他们通过观测木星伽利略卫星的运动,以及根据星历表确定木星的距离,估算木星的质量。图3-A是他们的部分观测记录。我们假设卫星均以圆轨道绕木星公转,根据观测记录,回答39-44小题。

木星及伽利略卫星的观测记录
图3-A 某天文社社员对木星及伽利略卫星的观测记录,图中的时间均为北京时间,观测点位于珠三角地区。字母I、E、G、C 分别代表木卫一、二、三、四。图片上方为北,右方为西。

39. 这四颗卫星中,没有与其它伽利略卫星处于轨道共振状态的是?(  )
A. 木卫一   B. 木卫二
C. 木卫三   D. 木卫四

40. Day 11晚上21:00左右,地球、木卫三和地球之间的位置关系最接近以下哪项?(向左为东)(  )

地球、木卫三和地球之间的位置关系

41. 社员们观测到木卫三在Day 10的0:00左右和木星的西边缘几乎重合,同一天4:00左右和木星的东边缘几乎重合。由该观测结果可估算出木卫三的轨道周期接近?(  )
A. 22小时   B. 43小时
C. 172小时   D. 194小时

42. 在观测木卫前,社员们还进行了视场测定。他们在关闭跟踪的状态下,观测到一颗天赤道附近的恒星用了35秒从视场中心运行到视场边缘。此时望远镜的观测视场直径为?(  )
A. 35角秒  B. 280角秒
C. 525角秒  D. 1050角秒

43. 在Day 11晚上21:00,木卫三与木星中心的角距离占视场直径的1/4。又由星历表得知木星当天与地球的距离约5.6AU,木卫三的轨道半径约?(  )
A. 2.85×105km
B. 5.04×106km
C. 1.07×106km
D. 2.15×106km

44. 木卫三的轨道周期𝑇,轨道半径𝑅,木星质量𝑀之间的定量关系为(使用国际单位制)?(  )
A. 𝑀 = 𝑅3/𝑇2
B. 𝑀 = 4𝜋2𝑅3/𝐺𝑇2
C. 𝑀 = 4𝜋𝑅2/𝐺𝑇3
D. 𝑀 = 16𝜋𝑅2/𝐺𝑇4

Ⅳ. 大科学装置

  位于未知星球上的社长通过长期观察发现,原来他一开始醒来的遗迹建筑本身,就是一个巨大的天文测量工具。
  建筑整体沿正南正北方向建造,中间是一条贯穿南北的平整的大道,最南端建有一座高塔,塔顶是一座只有一堵墙的祭坛。祭坛的墙朝向南方,开有一个左右宽,上下窄的长方形的透光孔,长方形所在平面垂直于南北方向。每天太阳上中天时,阳光会通过这个孔,在大道上照出一个长方形的光斑。大道上有12条用黑曜石砖铺成的标示线,它们的分布并不均匀。从光斑落在离塔最远的一条黑曜石线起算,太阳黄经每改变30°,光斑都会精准地落到另一条黑曜石线上,而且光斑只会在离塔最远和最近的黑曜石线之间移动。
  通过三角测量,社长估算出塔顶的长方形透光孔高度约160米,最远的黑曜石线离透光孔正下方约108米,最近的黑曜石线离透光孔正下方约34米。
  请根据以上信息回答45-50小题。

45. 高塔、大道和黑曜石线构成的装置最可能是?(  )
A. 赤道式日晷 B. 圭表
C. 经纬仪   D. 墙仪

46. 根据故事背景,黑曜石条线均落在高塔的北边,这说明遗迹位于星球的?(  )
A. 北回归线以北
B. 北回归线以南,赤道以北
C. 南回归线以北,赤道以南
D. 南回归线以南

47. 当方形光斑照到离高塔最远的黑曜石线上时,那天接近星球上的?(  )
A. 夏至 B. 立冬 C. 冬至 D. 立春

48. 社长所在行星的黄赤夹角约?(  )
A. 12° B. 17° C. 23° D. 30°

49. 春分和秋分对应的黑曜石线离夏至对应的黑曜石线距离约?(  )
A. 92米 B. 68米 C. 37米 D. 34米

50. 下列观点中最不准确的一项是?(  )
A. 长时间来看,行星进动带来的测量误差可以忽略
B. 遗迹所在地的约在北纬23°地区
C. 该星球能出现极昼和极夜现象的地区的纬度范围比地球的窄
D. 该装置也可用于粗测上中天天体的地平高度

参考答案(低年组)

1-10. BCADC BBBAA

11. D。我们日常用的平太阳时每天长度恒定。但真太阳时受黄赤夹角和公转轨道非正圆两个因素影响,每天长度不一样。真太阳上中天时,时角为零,真太阳时为12时,但平太阳时可能会早于或晚于12时。

12. C

13. 北落师门是秋季的亮星,可判断最佳答案是D。

14. C。五帝座一、大角星和角宿一组成著名的春季大三角,是我们辨认星空的起点之一。

15. B。参宿四的星斑大小远小于望远镜的分辨率,哑铃星云中心的白矮星在14等左右,拍摄星云的过程中用10英寸(25.4厘米)口径的望远镜拍摄星云的时候完全有可能拍到白矮星。

16. A。超新星的命名规则:SN(Supernova)+ 爆发年份。

17. B

18. C。天王星黄赤夹角达97.8°,几乎“躺着”绕太阳公转,极昼和极夜区覆盖行星表面大部分区域。其昼夜变化由公转主导。

19. C。金星有着非常浓厚的以二氧化碳为主要成分的大气,表面温度可达470摄氏度以上,昼夜温差可以忽略。离太阳最近的火星白昼温度可达430摄氏度,夜间温度降至零下180摄氏度左右。最佳选项是金星。

20. A

21-25. CBDAC 差旋层位于辐射层和对流层之间的过渡区,往内的辐射层有着较均一的自转速度,往外的对流层则呈现较差自转,即赤道地区自转较快,随着纬度增高自转变慢。天文学家认为差旋层和太阳磁场有着非常密切的关系。

26. 由冬季六边形可推知D位于秋季星座的片区,这里应该没有亮星,且D刚好在黄道星座内,可推知D是行星。

27. C

28. 冬季极大的流星雨选项里只有A。

29. C。双子座流星雨极大在12月13-14日前后,由经验可知在冬至日前后地方时子夜时分,作为季节特征的冬季六边形接近上中天,13-14号出现类似的星空比冬至日晚40分钟左右。由六边形到子午线的距离大致判断出星图观测时间应该在当地子夜前1-2小时左右(10点-11点左右),对应北京时间11:30 AM,观测点经度应与东经120°相差180°再往西一点,即西经60°再稍偏西。结合北极星的高度,可排除AD,得出答案C;亦可根据时差(15°对应1小时)排除答案D,得C。

30. B。M57位于天琴座(夏季星座),当天很难看到,只在日落后一小段时间出现在天空。

31. D。根据实际情况安排观测计划和道具。观测点在热带地区。

32. D。Mars 2020已经多次在火星发射窗口前宣布推迟。

33. B。文中已提到,要通过相对节省燃料的霍曼轨道达到火星,在地球轨道上变轨时地球(航天器)与火星之间的夹角要在44°左右,满足这个条件时就是火星探测器的发射窗口。

34. A。火星、地球和太阳两次回到相近的相对位置的时间间隔,称为火星和地球的会合周期。

35. A。脱离的地球引力控制的飞行器在飞往火星的过程中将受太阳引力影响,以椭圆轨道绕太阳运动。根据开普勒第一定律,太阳在轨道的焦点上。

36. B。这条轨道远日点在火星轨道上,近日点在地球轨道上,已知地球轨道半径和火星轨道半径约为1AU和1.5AU,转移轨道的半长轴𝑎=1AU+1.5AU/2=1.25AU。由开普勒第三定律可得上述轨道的周期:

轨道的周期

从地球轨道到火星轨道要飞行半个轨道周期,所以飞行时间𝑡=𝑇/2=0.7𝑦𝑟

37. C。只要转移轨道和火星轨道相交,理论上就能到达火星,不考虑燃料和技术难度,高速以直线奔赴火星也是可以的。霍曼轨道是一种相对省燃料的方案,但不省时间。

38. D

39. D。轨道共振是这些卫星的轨道周期成整数比的关系,木卫一,木卫二,木卫三处于1:2:4的轨道共振当中,该比值即它们绕木公转的周期比。本题考察对伽利略卫星背景知识的了解的广度。

40. 由图中可看出,木卫三(G)在Day 11晚上21:00-22:00没有明显移动,前后两天的观察中,一小时内木卫三的位置都有明显变化,同时前后两天木卫三与木星的角距离先增大,后减少,Day 11 21:00-22:00左右到达最远。可知这是木卫三到轨道在视平面上投影的最远端,此时木卫三与木星的连线近似垂直于视线方向,而且由图可知木星在木卫三西边。答案选A。

41. Day 10的0:00木卫三正相对木星自西向东运动,它与木星圆面中心的连线平行于视线方向时,时间应接近它接触木星圆面西端和东端时刻的中点,即Day 10的2:00左右。从上述时刻运行到木星东边离木星最远点(Day 11 21:30左右),需要约1/4个周期。21.5h+22h/(1/4)=174h。最佳答案为C。

42. D。这是一种测量望远镜视场的常用方法。恒星周日视运动主要是由于地球自转导致的,地球24小时转360°,所以1小时转15°,1分钟转15′,1秒钟转15″。天赤道附近的恒星单位时间内的角位移恰好也是这个值。所以根据恒星从视场中心运动到边缘的时间就能算出视场大小。望远镜视场直径=35秒×15″/秒×2=1050″。

43. C。当天木星和木卫三的角距离为1050″/4=262.5″≈1.27×10-3rad。由40小题的几何位置可知此时的角距离对应了轨道的角半径。所以轨道的物理半径约为𝑟=1.27×10-3rad×5.6AU ≈1.07×106km。

44. 国际单位制下,开普勒第三定律的形式为:

开普勒第三定律

可推得答案B。也可根据圆周运动的规律推导。

45. B。根据描述,该仪器的结构和工作方式如图所示。该仪器是一个圭表。

圭表

现实中的圭表
现实中的圭表

46. A。正午日影一直指北,证明太阳直射点一直位于观测点南方。由地理常识可知太阳直射点最北可到北回归线,说明观测点在北回归线以北。

47. C。太阳高度角越大,影子越短。高塔的结构使得光斑只有在接近正午时才会照到黑曜石线上,北回归线以北地区正午太阳高度角在夏至最大,冬至最小。所以那天接近冬至。

48. 光孔的高度h,光斑到光孔的水平距离L,以及太阳高度角θ有如下关系:

𝐿 = ℎ/ tan 𝜃

  由题目信息可知夏至日光斑的水平距离为34米,冬至日光斑的水平距离为108米,光孔高度160米。这两天的正午太阳高度角分别为:
1553876178913599.png56°

  设黄赤夹角为𝜀,当地纬度为𝜑,夏至的冬至的正午太阳高度角分别为𝜃 = 90° − 𝜑 + 𝜀和𝜃 = 90° − 𝜑 − 𝜀。所以𝜑 = 90° − (𝜃 + 𝜃)/2,𝜀 = (𝜃 − 𝜃)/2。解得𝜑 = 23°,𝜑 = 𝜀 =11°。最佳答案是A。

49. D。春秋二分太阳位于天赤道,此时太阳正午地平高度𝜃=90°−𝜑=67°。所以𝐿=160/tan67°≈68米。和夏至日光斑所在的位置距离为68米-34米=34米。

50. 经过上面的计算,可知B正确。该星球黄赤夹角比地球的小,所以C正确。该表到塔的水平距离,光孔中露出的天区的地平高度会发生变化,方位大致保持正南正北,故D也准确。A选项描述含糊。长期看,行星进动会导致黄赤交点产生显著变化,北天极相对恒星背景也会有位移,这对天文测量当然会有严重的影响;但要注意一点,进动不会显著影响北天极在当地出现的方位和地平高度,我们依然可以利用该仪器测定当时的春分、秋分、冬至和夏至等节气的出现时刻。综合而言,A最不准确。


2020年广东省中小学生天文知识竞赛试题(高年组)

注意事项:
1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。
2、选择题全部为单项选择,考生直接在试题页面中点选一个最接近正确的答案,答错不扣分。
3、总分100分,每题2分,考试时间100分钟。
4、本场考试允许使用不具编程功能的计算器。
5、考试过程中不得切出考试页面,否则平台将自动收卷。
6、比赛结果在广东天文学会网站和微信公众号公布。

Part 1. 天文热点

1. 我国首个自主发射的火星探测器“天问一号”计划于何时入轨火星?(  )
A. 2020年12月底左右
B. 2021年2月底左右
C. 2021年5月中左右
D. 2022年7月底左右

2. 2020年的诺贝尔物理学奖分别颁发给罗杰·彭罗斯、莱因哈特·根策尔和安德烈娅·盖兹。其中彭罗斯获奖的理由是“发现黑洞形成是广义相对论的一个预言”,那根策尔和盖兹获奖的理由是?(  )
A. 发现银河系中心的超大质量致密天体
B. 发现第一颗环绕类太阳恒星运动的系外行星
C. 验证了引力波的存在
D. 发现了一种测量宇宙大尺度结构的探针

3. 2020年2月,欧航局和美航局合作的项目SolO探测器顺利升空。SolO的探测对象是?(  )
A. 水星 B. 金星 C. 月球 D. 太阳

4. 2020年9月14日,《自然·天文》杂志上发表了Jane Greaves教授等人的研究成果,它们发现了金星大气中存在着生物标志物__________,但后续研究表明,该结果可能不准确。(  )
A. 硫化氢   B. 氧化氢
C. 磷化氢   D. 氟化氢

5. 2020年7月,一颗“黑马”彗星亮度达到2等以上,吸引了很多爱好者拍摄。这颗彗星是?(  )
A. C/2019 Y4 (ATLAS)
B. C/2020 F8 (SWAN)
C. C/2020 F3 (NEOWISE)
D. C/2019 U6 (Lemmon)

6. 2020年,我国境内能观测到下列哪种天象?(不含半影月食)(  )
A. 月全食   B. 月偏食
C. 日全食   D. 日环食

7. 2020年4月24日是我国首个人造卫星“东方红一号”成功发射_______周年。(  )
A. 40 B. 50 C. 60 D. 70

8. 北京时间2020年10月21日,OSIRIS-Rex(冥王号)探测器对小行星_______进行了首次采样。(  )
A. 龙宫 B. 贝努 C. 糸川 D. 灶神星

9. 2019年年底,一颗本来位列全天前20亮星的恒星亮度持续下降,甚至一度跌出前20亮星排名。2020年年初,它的亮度又恢复了。这颗恒星是?(  )
A. 参宿四   B. 参宿七
C. 毕宿五   D. 北河二

10. 以下哪个天象在2020年11月出现?(  )
A. 水星西大距 B. 木星冲
C. 金星东大距 D. 土星合木星

Part 2. 基础知识

11. 本地恒星时等于本地_________
A. 秋分点的时角
B. 秋分点的赤经
C. 春分点的时角
D. 春分点的赤经

12. 农历一个月的时间长度接近一个_________
A. 朔望月   B. 恒星月
C. 近点月   D. 交点月

13. 一位在珠三角的同学在他生日那天的北京时间22:00看到北落师门上中天,这位同学最可能在哪月生日?(  )
A. 1月 B. 4月 C. 7月 D. 10月

14. 以下哪项属于激变变星?(  )
A. 新星
B. 蒭藁型变星
C. 大陵型变星
D. 盾牌座δ型变星

15. 用一台25.4厘米口径的牛顿式反射望远和市面常见的天文CMOS/单反,在极限星等2.5等左右的城市里进行天文摄影。下列情况中最不可能的是?(  )
A. 拍到火星的两颗卫星
B. 拍到参宿四表面的星斑
C. 拍到国际空间站
D. 拍到哑铃星云中心的白矮星

16. 一颗表面温度11600K的恒星,光度是太阳的100倍。它的半径是?(R是太阳半径)(  )
A. 0.4R B. 1R C. 2.5R D. 5R

17. 夏威夷的莫纳克亚山是天文学的“圣地”之一。以下哪个望远镜不是架设在莫纳克亚山上?(  )
A. 凯克望远镜 I/II
B. 甚大望远镜
C. 昴星团望远镜
D. 双子望远镜(北)

18. 唐代李贺的《塞下曲》中有这样一句:“秋静见旄头,沙远席羁愁。”文中的“旄头”其实是一个深空天体,它在中国文化中常代表外敌。这个天体就是?(  )
A. 鬼星团   B. 昴星团
C. 蟹状星云  D. 天狼星

19. 木星最主要的成分是?(  )
A. 碳 B. 氮 C. 氦 D. 氢

20. 一台折反射望远镜物镜口径200mm,焦距2800mm,目镜焦距20mm,它现在的放大率是?(  )
A. 140倍   B. 200倍
C. 14倍     D. 10倍

Part 3. 观测与应用

Ⅰ. 日常观测

  某天文社的成员们准备组织一次流星雨观测,观测日期定在流星雨极大前后两天内。社团干部准备让社员们在上半夜观测时辨认天空中的亮星与主要星座,并印发了图1-A的星图供社员们实时对照。星图对应的是北京时间11:30 AM观测地的星空,此时观测地已入夜。请结合上述信息回答21-26小题。

北京时间11:30 AM观测地的星空
图1-A 北京时间11:30 AM观测地的星空

21. 星图中的哪颗亮星是行星?(  )
A. A星 B. B星 C. C星 D. D星

22. 星图中虚线框框选的区域主要属于?(  )
A. 海豚座   B. 仙后座
C. 白羊座   D. 巨蟹座

23. 社团组织观测的流星雨最可能是?(  )
A. 双子座流星雨
B. 英仙座流星雨
C. 宝瓶座η流星雨
D. 白昼白羊座流星雨

24. 社团所选的观测点最可能是下面哪一项?(  )
A. 伦敦(东经0.1度,北纬51.3度)
B. 吉布提(东经42.2度,北纬11.1度)
C. 阿鲁巴(西经70度,北纬12.3度)
D. 火奴鲁鲁(西经157.9度,北纬21.3度)

25. 观测点当晚下半夜,社员们不能观测到下列哪个天体?(  )
A. M44 B. M57 C. M81 D. M45

26. 关于图1-A星图的星空,下列说法中正确的一项是?(  )
A. 仙女座大星系出现在西北方天空
B. 北河二没出现在天空中
C. B星是组成“春季大圆弧”的恒星之一
D. 流星雨的辐射点还没升起

Ⅱ. 月掩星

  月球在围绕地球运行期间,经常会掩蔽背景的恒星,有时还会遮掩太阳系内的行星和小天体。月掩星观测有助于我们精确测量月球地形,发现望远镜难以观测的密近双星。2021年4月17日将发生一次月掩火星天象,本次掩星我国南方部分省市可见。图2-A是这次掩星可见区域预报,图2-B是海口市的详细预报表。请根据预报回答27-34小题。

2021年4月17日月掩火星掩星带
图2-A 2021年4月17日月掩火星掩星带

2021年4月17日月掩火星海口市掩星预报信息
图2-B 海口市掩星预报信息

27. 以下哪个城市看得到此次掩星现象?(  )
A. 漠河
B. 上海
C. 乌鲁木齐
D. 以上选项都不正确

28. 此次月掩火星事件,在海口能够观测多长时间?(  )
A. 21小时51分29.5秒
B. 15分07秒
C. 30分14秒
D. 60分28秒

29. 掩星发生时,北京时间大约是22点。在图2-A中,东经约70度的经线以西的掩星带南北两侧都以虚线标注,你认为这代表了什么意思?(  )
A. 掩星带该区域将发生火星掩月球
B. 掩星带该区域火星由月球暗面掩入
C. 掩星带该区域还未月出
D. 掩星带该区域还未日落

30. 掩星带东西两端各有一个椭圆标识的区域,著名旅游胜地巴厘岛就位于此次掩星带东侧的标识区域内。这个两个椭圆代表了什么意思?(  )
A. 该区域内无法看到月掩火星
B. 该区域内无法看到月掩火星的全过程
C. 该区域内只能看到月掩火卫
D. 该区域内过往气象记录不佳,不适宜观测

31. 在掩星带的南北界线附近,可以看到一种特殊的掩星现象:掠掩。此次月掩火星,我国西藏、云南、广西和广东多地都可以观测到掠掩现象,火星将在被月面边缘掠过的过程中会多次消失和再现。请问掠掩现象的成因是什么?(  )
A. 火星表面不同区域反照率的差异
B. 火星被嫦娥5号的轨道器和返回器掩食
C. 月球地形起伏不平
D. 大气扰动

32. 在掩星观测中,计时是一个重要的工作。准确的计时结果,能够帮助天文学家精确测量星体的大小、位置,确定月球的轨道、地形。在计时前,需要先对时,请问以下哪种对时方式不可以应用于掩星观测中?(  )
A. 利用中央电视台的整点报时对时
B. 使用GPS对时
C. 国家授时中心短波信号对时
D. 国家授时中心NTP服务器网络对时

33. 下列说法正确的是?(  )
A. 在月球亮面发生的掩始/掩终现象更容易被测准发生时刻
B. 月掩星的食带宽度取决于月相
C. 月掩星现象的持续时间可超过1小时
D. 我们可以去非洲中部观看本次月掩火星

34. 2024年8月10日,将发生月掩角宿一,我国观测条件良好。假设在观测此次掩星时,在小图同学所在的观测点,角宿一恰好通过月面中心点。假如小图发现角宿一并非突然消失,而是在”先变暗、再消失”。角宿一首先由1.04等下降至3.04等,最后再迅速消失。请问根据小图的观测,梦想成为小小天文学家的你能够得出什么结论?(  )
A. 角宿一是双星,主星和伴星亮度分别为1.22等、3.04等
B. 角宿一是双星,主星和伴星亮度分别为1.04等、1.22等
C. 角宿一是双星,主星和伴星亮度分别为1.04等、3.04等
D. 角宿一是双星,主星和伴星亮度分别为2.00等、3.04等

Ⅲ. 火星探测器

  霍曼转移轨道是一种相对节省燃料的空间飞行轨道。前往外行星的探测器在恰当的时机变轨,脱离地球的引力控制,并以近日点在地球轨道上,远日点在目标行星轨道上的椭圆轨道绕太阳运动。当飞行器到达远日点时,目标行星刚好到达同一位置,飞行器调整速度,让目标行星俘获,开展探测任务。第四届万维望远镜宇宙漫游制作大赛获奖作品《卫星的变轨》也简单地描述了这一变轨的过程。“天问一号”的地火转移轨道也近似是一条霍曼转移轨道,现假设地球轨道和火星轨道均为圆轨道,回答35-43小题。

35. 地—火霍曼转移轨道的轨道半长轴约为?(  )
A. 1 AU   B. 1.25 AU
C. 1.5 AU   D. 2.5 AU

36. 探测器沿上述轨道从地球轨道出发到达火星轨道约需要多长时间?(  )
A. 1.8年   B. 1.4年
C. 0.7年   D. 0.4年

37. 探测器从地球轨道上变轨进入霍曼转移轨道(绕行方向与地球公转方向相同)前往火星时,根据你的估算,日火与日地连线的夹角约?(  )
A. 36° B. 43° C. 56° D. 84°

38. 由第37小题可知,从以霍曼转移轨道前往火星有一个严格的时间窗口。这个时间窗口大约多久出现一次?(  )
A. 300天   B. 610天
C. 780天   D. 920天

39. 世界多个航天机构趁着本次发射窗口在2020年发射了火星探测器,这不包括以下哪个国家或机构的探测器?(  )
A. 中国    B. 美国
C. 阿联酋   D. 欧洲航天局

40. 近年的火星探测为我们带来了很多关于火星的新认知,行星科学家们甚至还发现,火星地表下很可能还存在液态水。上述发现是基于分析哪个火星探测器的数据得到的?(  )
A. 好奇号   B. 机遇号
C. 天问一号  D. 火星快车

  霍曼转移轨道虽然节省燃料,但探测器飞行时间较长。如果不担心燃料和载荷的问题,我们可以设计更快到达火星的线路。例如可沿图3-A所示的抛物线轨道飞行。抛物线的顶点位于地球轨道上。

41. 沿上述抛物线转移轨道飞行的探测器在近日点附近相对太阳的速度约为?(  )
A. 42 km/s  B. 30 km/s
C. 20 km/s  D. 11 km/s

42. 在飞行器沿抛物线轨道飞行的过程中,下列哪项近似不变?(  )
A. 太阳与探测器的连线在单位时间内扫过的面积
B. 探测器与太阳的引力势能
C. 探测器相对太阳的角速度
D. 探测器和太阳之间的引力

43. 探测器从地球轨道飞行到火星轨道耗时约?(提示:①焦点在(𝑝/2, 0)的抛物线的标准方程为2𝑝𝑦 = 𝑥²;②抛物线𝑦 = 𝑎𝑥²,𝑥 = 𝑏和𝑥轴三者所围图形面积𝑆 = 𝑎𝑏³/3)(  )
A. 40天   B. 70天
C. 110天   D. 137天

一种抛物线转移轨道方案

图3-A 一种抛物线转移轨道方案。探测器以顶点在地球轨道上的抛物线轨道飞行,箭头表示探测器的飞行方向。

IV. 观测突破

  在过往的比赛中我们提到,到达了未知星球的某天文社社长已经和该星球上的文明开展了交流。最近,社长了解到这个星球上存在一种神奇的植物,当地人称为“星河草”。这种植物可以富集铝元素,并在阳光过于猛烈时大量生成一种高反射率物质,让叶片反射过多的阳光。当地文明从星河草中提取这种物质做成高反射率涂料,制作镜子等物品。
  社长在一块岩石上磨制出半径为1.92m,横截面直径为10cm的凹球面,并均匀涂上反光液体,再把一片平面镜和一片凸透镜放在支架上做成一台反射望远镜。凸透镜的焦距16mm。当社长用望远镜观测一颗2等的行星时,发现能看清它圆形的轮廓,此时这颗天体的圆面刚好一半明亮一半黯淡无光。假设行星的公转轨道与社长所在的星球的公转轨道共面,且都以圆轨道绕恒星S公转,请结合已知信息回答44-50小题。

行星与观测者的位置关系图(未按真实比例和角度作图)

图4-A 行星与观测者的位置关系图(未按真实比例和角度作图)。社长位于星球O观测另一颗行星P,行星P被恒星S照亮。𝑟、𝑏和𝑑分别表示恒星和行星P,恒星和星球O,星球O与行星P的距离。夹角𝛼称为相位角,夹角𝜃是行星与太阳之间的角距离。

44. 该行星此时的相位角为(相位角的定义见图4-A)?(  )
A. 0° B. 30° C. 90° D. 135°

45. 此时行星P与恒星S的角距离为30°,行星P与星球O的轨道半径之比𝑟/𝑏为?(  )

轨道半径之比𝑟/𝑏为

46. 关于该行星P的亮度,以下哪项说法有误?(  )
A. 该行星亮度的与恒星S的光度有关
B. 该行星的亮度与行星表面物质成分有关
C. 该行星的亮度与𝑟²成正比
D. 该行星的亮度正比于1/𝑑²

  行星表面的反照率也会影响行星的亮度,天文学上常用的反照率有两种:邦德反照率𝐴和几何学反照率𝑝。邦德反照率是行星反照回空间的总辐射能量和入射行星截面的总辐射能量之比,但我们计算行星亮度时,由于要考虑行星相位的影响,更多是用到几何学反照率𝑝。行星的亮度𝐹 ∝ 𝑝Φ(𝛼)。其中相函数0 ≤ Φ(𝛼) ≤ 1,反映了相位对亮度的影响,并规定Φ(0) =1。取

亮度

47. 现在我们给出行星亮度的具体表达式。设行星的横截面积为𝐴。根据上面的分析对选项进行排除,可知行星的亮度与在星球O处测得的恒星S亮度𝐹0(大气外亮度)之比为?(  )

大气外亮度

48. 设社长所在星球上测得的恒星S的视星等为𝑚0,行星的视星等𝑚可表示成?(  )

行星的视星等

49. 当相位角𝛼 = 45°,行星的视星等将变成?(  )
A. 0等 B. 1.0等 C. 1.4等 D. 2.3等

50. 该行星与社长所在的星球均自西向东绕恒星S运动,下列说法正确的是(注意观测点在星球O上)?(  )
A. 该行星的亮度峰值将出现在西大距之后,上合之前的某个时刻
B. 该行星冲日当天亮度上升至最高值
C. 该行星上合当天亮度最大
D. 该行星的亮度峰值将出现在东大距之后,下合之前的某个时刻

参考答案(高年组)

1-12. BADCC DBBAA CA

13. 北落师门是秋季的亮星,可判断最佳答案是D。

14. A。激变变星是由于恒星自身物理原因出现爆发,导致亮度骤增的一类天体。绝大多数的新星是因双星系统中的白矮星吸收来自伴星红巨星的物质,触发剧烈的热核反应而出现的。所以新星是一类激变变星。

15. B。参宿四的星斑大小远小于望远镜的分辨率,哑铃星云中心的白矮星在14等左右,拍摄星云的过程中用10英寸(25.4厘米)口径的望远镜拍摄星云的时候完全有可能拍到白矮星。

16. 我们可近似把恒星看成黑体。恒星光度𝐿 ∝ 𝑅2𝑇4,这里𝑅是恒星半径,𝑇是恒星表面(光球)温度。太阳表面温度约5800K,题中恒星的表面温度约为太阳表温温度的2倍。根据比例关系可得答案为C。

17. B

18. 天狼和昴在传统文化中都有指代外敌的意思,题目提到了深空天体,D可排除,答案为B。此外,蟹状星云在公元1054年北宋时期的超新星爆发中形成,在唐代还不存在,且肉眼还不可见,亦可排除。

19. D

20. A

21. D。由冬季六边形可推知D位于秋季星座的片区,这里应该没有亮星,且D刚好在黄道星座内,可推知D是行星。

22. C

23. 冬季极大的流星雨选项里只有A。

24. 双子座流星雨极大在12月13-14日前后,由经验可知在冬至日前后地方时子夜时分,作为季节特征的冬季六边形接近上中天,13-14号出现类似的星空比冬至日晚40分钟左右。由六边形到子午线的距离大致判断出星图观测时间应该在当地子夜前1-2小时左右(10点-11点左右),对应北京时间11:30 AM,观测点经度应与东经120°相差180°再往西一点,即西经60°再稍偏西。结合北极星的高度,可排除AD,得出答案C;亦可根据时差(15°对应1小时)排除答案D,得C。

25. B。M57位于天琴座(夏季星座),当天很难看到,只在日落后一小段时间出现在天空。

26. A

27. D。由掩星带可知我国只有海南、广西和广东等部分低纬地区可见。

28. B。根据表格数据,由掩终时刻减掩始时刻即可得。

29. D

30. B。东边的是带食月落区,西边的是带食月出区。

31. C。在月轮边缘,由于月球山峰峡谷的影响,我们可会看到不同的山峰轮番掩盖后面的天体,使天体多次消失和再现的现象。通过恒星消失和再现的时间,我们可以估算这些山峰的宽度。

32. A

33. C。月球亮面的亮度越大于行星或恒星,当它们接近月球亮面时不容易测准;月掩星的食带宽度取决于月球视直径和它投影的方向,与月相无关;在非洲中部位于掩星带的虚线范围内,由29小题可知掩星发生时当地是白天,无法观测。月球每天东移13.2°左右,平均每小时33角分,月球视直径约30角分,所以月球相对恒星背景移动一个月球视直径大约1小时。加上地球自转(视差)和月球椭圆轨道等因素影响,地球上固定观测者看到月球移动一个月球视直径的时间可大于1小时,即月掩星持续时间可以超过1小时。

34. 角宿一是颗双星,两次亮度下降的原因是先掩了其中一颗子星1,后两颗都被掩。设两子星亮度分别为𝐹1和𝐹2,由普森公式可知未被掩时大角星视星等𝑚=-2.5lg(𝐹1+𝐹2)+𝐶,子星1被掩后,只余子星2的光,所以大角星的视星等即子星2的视星等𝑚2=-2.5lg𝐹2+𝐶。

角宿一是颗双星

35. B。霍曼轨道如下图所示,该轨道远点在火星轨道上,近点在地球轨道上,太阳位于焦点上。根据椭圆几何性质可知轨道半长轴约𝑎=1.5AU+1AU/2=1.25AU。参赛者需事先了解日火距离和日地距离。

霍曼轨道

36. C。由开普勒第三定律可得上述轨道的周期:

轨道的周期

从地球轨道到火星轨道要飞行半个轨道周期,所以飞行时间𝑡=𝑇/2=0.7𝑦𝑟

37. B。当飞行器到达火星时,火星必须同时到达霍曼转移轨道的远点,飞行器才能与火星相遇,变轨被火星俘获。这就要求发射时预留一个“提前量”,在火星发到达交汇点之前发射飞行器。火星公转周期𝑇用1.5 AU轨道半长轴和开三估算结果为671天,准确值约687天。但这个差异并不影响我们的粗略估算。以现场估算的671天为例,已求得飞行时间为0.7𝑦𝑟 ≈ 255天,这段时间内日火连相对日地转过的角度为360° × 255/671 ≈ 137°,由几何关系知发射时日地连线和日火连线的夹角为180°−137°=43°。根据估算条件的差异,结果一般在44°左右。

38. 要以霍曼轨道到达火星,发射时火星、地球和太阳的相对位置有严格要求。三者两次到达相似的相对位置所需要的时间即火星和地球的会合周期。火星和地球的会合周期𝑇 = 𝑇𝑇 / (𝑇 − 𝑇),𝑇用1.5 AU轨道半长轴和开三估算结果为671天,准确值约687天,对应会合周期分别为800天和780天。均可得出答案C。

39. D。Mars 2020已经多次在火星发射窗口前宣布推迟。

40. D

41. A。抛物线轨道和地球轨道的交点刚好是近日点,速度方向与平行于该点的切线,速度大小即地球轨道上的逃逸速度42km/s。

42. A。开普勒第二定律的本质是系统角动量守恒,无论轨道是抛物线、双曲线还是椭圆,均遵从这一规律。

43. B。在近地点,探测器速度42km⁄s ≈ 8.8AU⁄yr,探测器与太阳连线在单位时间内扫过的面积为:

探测器与太阳连线在单位时间内扫过的面积

只要知道图3-A中阴影部分的面积𝑆,即可知道扫过这块面积所需要的时间(飞行时间)∆𝑇。

  图3-A已把抛物线轨道和地球公转轨道交点作为原点建立了直角坐标。以天文单位作为长度单位,该坐标中火星轨道的轨迹方程为:

𝑥² + (𝑦 − 1)² = 2.25

抛物线轨道的轨迹方程为:

4𝑦 = 𝑥²

联立两式解得联立两式解得。根据物理实际舍去𝑥的负数解,可知火星轨道与抛物线转移轨道的交汇点坐标为交汇点坐标。由坐标轴,𝑥和太阳—交汇点连线构成的梯形面积为梯形面积。根据提示,抛物线,𝑥轴和𝑥构成的图形面积为图形面积
所以

S

根据开普勒第二定律

∆𝑇

一种抛物线转移轨道方案。

提示中抛物线焦点(𝑝/2, 0)不准确,应为(0, 𝑝/2)。考虑图3-A与抛物线方程均正确,且根据抛物线的基本性质可判断标准方程,曲线开口和焦点位置的关系,对解题不造成根本性的影响。本题可正常得分。

44. C。3个天体的几何关系如下图所示,只有相位角为90°时,视平面才刚好同时平分亮区和暗区。

3个天体的几何关系

45. A。𝜃 = 30°时,sin 𝜃 = 𝑟/𝑏 = 1/2

46. C。行星亮度正比于行星P所在位置恒星S的辐射流𝐹0 = 𝐿/4𝜋𝑟²(𝐿是恒星光度),正比于它的反照率,反比于𝑑²,正比于行星的接收面积𝐴(横截面积)。其中反照率和地表物质化学成分、地形、大气等因素有关。

47. 由46小题提到的比例关系可排除,得出答案为A。

48. B。根据普森公式

根据普森公式

49. C。两行星的运行轨道都是圆轨道,所以𝑏和𝑟都是常数。已知1/2

  由正弦定理可得𝛼 = 45°时,1/2,𝜃 ≈ 20.7°,∠𝑃𝑆𝑂 = 114.3°。再次应用正弦定理,得2.58𝑟,𝑑′² ≈ 6.65𝑟²。

0.76

  当𝛼 = 90°时,

0.32

  由48小题答案可知𝛼 = 45°视星等

𝛼 = 45°视星等

评卷分析:
  按选择最接近答案的原则,本题应选D,但D选项亮度低于2等,会影响50小题亮度极大时刻的判断。视星等与相位角的关系如下面两图所示,上图是相位角0°-100°范围的局部放大,解题中需要计算的数据点以及题目作为条件给出的数据点已用红叉标注。上合与大距之间,行星亮度不会低于2等,大距之后亮度会一直变暗。图中给出的亮度极大值出现在相位角62°左右。若以α=45°时,视星等为2.3等为判据,有可能造成上合时亮度最高的误判。
  在正确的计算中,虽然相位角在0°和45°时亮度差异很小(α=0°,m=1.95),但起码可说明相位角0°增大到90°过程中,亮度整题趋势在下降。如果有亮度极大值点存在,也应该在大距和上合之间出现。
  本题可考虑取消计分,50小题可通过运算结果排除选出,可保留。

视星等与相位角的关系

50. 上合当天的亮度约1.95等,比1.93等稍暗,排除C。内行星不存在冲,可以排除B。𝛼 = 45°到𝛼 = 90°亮度在下降;𝛼 = 0°到𝛼 = 45°亮度缓慢增加,又从几何分析可知𝛼 = 90°时恰好大距,所以上合和大距之间存在一个亮度极大点。答案A最符合分析结果。


2020年广东省中学生天文知识竞赛复赛试题(低年组 实测与理论部分)

注意事项:
1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。
2、参赛选手请将答案填写在答题纸的有效答题区域上,在本试卷上的作答结果按无效处理。比赛结束时将回收答题纸(草稿纸)。
3、每张A4答卷的开头都有“答题纸□ 草稿纸□”标识,除了首张答卷外,选手可根据需要自由选择每张空白答卷的用途。所有用作答题纸的答卷都要在“答题纸□”的方框中打“√”,并按作答顺序标上页码。所有用作草稿纸的答卷都要在“草稿纸□”的方框中打“√”。废弃的答题纸需把“√”涂抹掉。
4、全卷总分100分,答题时间90分钟。
5、考试结束前30分钟方可交卷离场。交卷时答题纸按顺序放置在上方,草稿纸和废弃的答题纸放置在下方。
6、本场考试允许使用不具编程功能的科学计算器。

1. 红巨星支上端(共32分)
  中低质量恒星在核心的氢燃尽后,将进入红巨星阶段,此时恒星的能量主要来自包围致密氦核(未燃烧)的氢燃烧壳层。随着氦核质量不断增长,恒星将沿着赫罗图上的红巨星支(Red Giant Branch)上移,直到氦核的质量达到临界,触发“氦闪”,恒星从红巨星支跳转到赫罗图的高温端,这使得恒星在赫罗图上的演化轨迹显得不连续,红巨星支存在一个上顶点,称为红巨星支上端(Tip of the Red Giant Branch,简称TRGB)。在I波段,TRGB的绝对星等约-4等,可充当标准烛光。

1.1 图1-1是一颗1倍太阳质量恒星在赫罗图上的等龄线(可看作恒星的演化轨迹)。请在答题纸上的图片里作以下标注:在红巨星支旁边标注“RGB”;用“●”标出红巨星支上端的位置,并在旁边标注TRGB。(6分)

1倍太阳质量恒星的演化轨迹
图1-1 1倍太阳质量恒星的演化轨迹。

1.2 Hatt等人利用哈勃望远镜上的先进巡天照相机广域通道(ACS/WFC)的测光数据,通过TGRB法测量NGC 1148和NGC 1316的距离(Hatt et al.2018),相关信息总结在表1-1中。请估算NGC 1316的真距离模数和距离。(12分)

NGC-1148和NGC-1316的部分测光信息

表1-1 NGC 1148和NGC 1316的部分测光信息。其中𝑚TRGB是两天体在I波段中TRGB观测视星等,𝐴F814W是𝑚TRGB所在波段的消光。(Hatt et al.2018)

用ACS/WFC数据绘制的赫罗图(Hatt et al.2018)
图1-2

1.3 图1-2是用ACS/WFC数据绘制的赫罗图(Hatt et al.2018),箭头和红线标出了计算机程序判断的TRGB所在位置。在TRGB周围和上方,还有很多零散分布的非RGB恒星样本干扰我们的判断。参考图1-1,这些干扰样本可能主要是什么恒星?(6分)

1.4 假设GAIA卫星能测出0.15毫角秒的周年视差,它能不能通过三角视差法直接测量NGC 1316或星系内的亮星的距离?(8分)

2. 月亮的颜色。(共24分)

2.1 简单说明为什么有时明明没发生月食,刚升起来的月亮却是红色的,但升高后就变成黄白色?(16分)

2.2 有时人们还会说某个月里将出现“蓝月亮”(天文术语)。简述什么是“蓝月亮”。(8分)

3. 星历表(共44分)
  下表是太阳系某行星的星历表。请根据表中的信息回答下列问题。

3.1 绘制该行星的地平高度ℎ 随北京时间 𝑡 变化的曲线图。(14分)
3.2 该天体在当天什么时刻上中天?(6分)
3.3 已知观测者在北半球,估算观测点的地理纬度,要求误差在2角分以内。(8分)
3.4 估算观测点的地理经度,要求误差在10角分以内。(10分)
3.5 判断该天体是太阳系内还是太阳系外的天体,需简述判断依据。(6分)

太阳系某行星的星历表

复赛答案(低年组)

1.1 (每个标注项各2分,共6分)

1倍太阳质量恒星的演化轨迹标注

1. 由表1-1可知NGC 1316的TRGB观测视星等为𝑚TRGB = 27.4 mag,对应的消光值为𝐴 = 0.03 mag。所以真距离模数为:
(没考虑消光不得分)

真距离模数

NGC 1316的距离为:
(用视距离模数扣1分)

NGC 1316的距离
(没考虑消光但计算正确扣1分)

1.3 由图1-1可发现渐近巨星支与TRGB非常靠近,且延伸到TRGB之上。这些渐进巨星支上的恒星会对判断造成干扰。

1.4 GAIA能测出𝜌=1.5×10-4"的周年视差,即它测距的上限为:

测距的上限

因为 𝑑 ≫ 𝑑max,所以GAIA无法通过三角视差法直接测量该天体的距离。

2.1 地球大气会散射月表反射过来的光。月光穿过的大气越厚,光线到达地表时所受的散射作用就越强。大气的散射作用对不同波长的光效果是不一样的,光的波长越短(颜色越蓝),所受的散射作用越强(即红化),这使得观测者看到偏红的月亮。月球刚升起时,到达观测者的光穿过的地球大气相对较厚,随着月球逐渐升高,光线穿过的地球大气厚度减少,大气散射导致的红化效应随月球地平高度的增加而减弱。综上,月球在地平线附近看起来会偏红,升高后会更接近原来的颜色。但是,在大气较为澄清的状态下,一般只会看到低空中的月亮呈黄色。红色的月亮多出现在有云雾、有灰霾、地表有明显的空气污染源或有大面积沙尘出现等场合。这些场景中,空气中的颗粒物,大大增强了大气的散射作用,使月亮呈现明显的红色。

要点:
地球大气的散射起主导作用。
散射强度与波长的关系。
天体地平高度与散射强度的关系。
低空小颗粒物的贡献。

2.2 蓝月亮是指拥有4次满月的季节里,出现的第3次满月。
  到了现代,由于著名天文科普杂志《天空与望远镜》在一篇1946年刊登的科普文章里内容出现失误,很多人误以为蓝月亮是指公历中一个月里出现的第2次满月。回答该答案亦可得分。

3.1

该行星的地平高度ℎ随北京时间𝑡变化的曲线图

3.2 由上图或星历表可知该天体在当天北京时间16:30上中天。
  提示:上中天时,天体地平高度达到最大值,出现在正南或正北方。由“时分秒”和“度分秒”计量系统的关系可知直接读取表中数据即可满足精度要求。

3.3 天体上中天时的地平高度ℎmax、当地地理纬度𝜁和天体赤纬𝛿之间具有如下关系:

max = 90° − |𝛿 − 𝜁|

由星历表得ℎmax = 34°41′,𝛿 = -25°8′。代入数据计算得:

𝜁 = −80°27′ 或 30°11′

即因为观测点在北半球,所以观测点在北纬30°11′。

3.4 天体上中天时,天体赤经等于本地恒星时𝑆,即:

𝑆 = 𝛼 = 16ℎ33𝑚

已由星历表查知天体上中天时东经120°地区的恒星时为𝑆0 = 18ℎ14𝑚
观测点的经度 𝜆 = 120° + (𝑆 − 𝑆0)
代入数据得 𝜆 = 94°45′,即东经94°45′

3.5 该天体的赤经赤纬在一天内有明显变化,正常只有太阳系内的天体才会相对恒星背景出现那么快的移动。该天体应在太阳系内。


2020年广东省中学生天文知识竞赛复赛试题(高年组 实测与理论部分)

注意事项:
1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。
2、参赛选手请将答案填写在答题纸的有效答题区域上,本试卷上的作答结果按无效处理。比赛结束时将回收答题纸及草稿纸。
3、总分100分,考试时间90分钟。
4、本场考试允许使用不具编程功能的科学计算器。

1. 红巨星支上端(共40分)

  中低质量恒星在核心的氢燃尽后,将进入红巨星阶段,此时恒星的能量主要来自包围致密氦核(未燃烧)的氢燃烧壳层。随着氦核质量不断增长,恒星将沿着赫罗图上的红巨星支(Red Giant Branch)上移,直到氦核的质量达到临界,触发“氦闪”,恒星从红巨星支跳转到赫罗图的高温端,这使得恒星在赫罗图上的演化轨迹显得不连续,红巨星支存在一个上顶点,称为红巨星支上端(Tip of the Red Giant Branch,简称TRGB)。

1.1 图1-1是一颗1倍太阳质量恒星在赫罗图上的演化轨迹。请在答题纸上的图片里作以下标注:在红巨星支旁边标注“RGB”;用“●”标出红巨星支上端的位置,并在旁边标注TRGB。(6分)

1倍太阳质量恒星的演化轨迹
图1-1 1倍太阳质量恒星的演化轨迹。

1.2 图1-2是通过理论模型计算的低质量恒星的等龄线。V、I、J、H 和K波段中,哪一个波段的TRGB最适合充当标准烛光?该波段下TRGB的绝对星等是多少(精确到个位)?(8分)

VIJHK五个波段下,不同金属丰度的恒星的100亿年等龄线(对应红巨星支)

图1-2 VIJHK 五个波段下,不同金属丰度的恒星的100亿年等龄线(对应红巨星支),纵坐标为绝对星等。每个子图中从左到右五条等龄线分别对应金属丰度-2.0、-1.0、-1.2、-0.8、-0.4。(Freedman et al.2020)

1.3 Hatt等人利用哈勃望远镜上的先进巡天照相机广域通道(ACS/WFC)的测光数据,通过TGRB法测量NGC 1148和NGC 1316的距离(Hatt et al.2018),相关信息总结在表1-1中。请估算NGC 1316的真距离模数和距离。(12分)

NGC-1148和NGC-1316的部分测光信息

表1-1 NGC 1148和NGC 1316的部分测光信息。其中𝑚TRGB是两天体在2.2小题答案波段中的TRGB观测视星等,𝐴F814W是𝑚TRGB所在波段的消光。(Hatt et al.2018)

用ACS/WFC数据绘制的赫罗图(Hatt et al.2018)
图1-3

1.4 图1-3是用ACS/WFC数据绘制的赫罗图(Hatt et al.2018),箭头和红线标出了计算机程序判断的TRGB所在位置。在TRGB周围和上方,还有很多零散分布的非RGB恒星样本干扰我们的判断。参考图1-1,这些干扰样本可能主要是什么恒星?(6分)

1.5 除了TRGB以外,列举两种理论上可用于测量河外星系距离的标准烛光。(8分)

2. 星历表(共60分)

太阳系内金星的星历表,该天体远日点在土星轨道以内

  上表是太阳系内某天体的星历表,该天体远日点在土星轨道以内,偏心率小于0.1。已知北京时间2021年1月1日0:00的儒略日为2459215.167。

2.1 简单绘制该天体的相位𝜑 随时间 𝑡 变化的曲线图。(14分)
(提示:①可将JD 2459215.167记为 𝑡 = 0 day;②选择20个左右的关键数据点即可绘制出变化曲线轮廓)
2.2 估算该天体的公转周期。(8分)
2.3 估算该天体的轨道半长轴。(6分)
2.4 这可能是哪个天体的星历表?(4分)
2.5 图2-1是北京时间2021年10月17日该天体在某地的详细星历表。请确定该天体上中天的时刻(误差2分钟以内)。(4分)
2.6 估算天体在2021年10月17日上中天时的赤经和赤纬。(10分)
2.7 估算观测点的地理经纬度。(14分)

北京时间2021年10月17日该天体在某地的详细星历表
图2-1

复赛答案(高年组)

1.1 (每个标注项各2分,共6分)

1倍太阳质量恒星的演化轨迹标注

1.2 标准烛光的光度因受尽量少的因素影响,I波段上,TRGB的绝对星等值几乎不受金属丰度影响,所以I波段下的TRGB最适合充当标准烛光,该波段下TRGB的绝对星等为𝑀TRGB = −4 mag。

1.3 由表1-1可知NGC 1316的TRGB观测视星等为𝑚TRGB = 27.4 mag,对应的消光值为𝐴 = 0.03 mag。所以真距离模数为:
(没考虑消光不得分)

真距离模数

NGC 1316的距离为:
(用视距离模数扣1分)

NGC 1316的距离
(没考虑消光但计算正确扣1分)

1.4 由图1-1可发现渐近巨星支与TRGB非常靠近,且延伸到TRGB之上。这些渐进巨星支上的恒星会对判断造成干扰。

1.5 如Ia型超新星和造父变星。(每种4分,答案合理即可)

1.5

相位𝜑随时间𝑡变化的曲线图

2.2 由𝜑 − 𝑡 图或星历表可查出行星相位在𝑡 = 85天和 𝑡 = 662天左右达到最大值,所以该行星的相位变化周期为:

𝑇 = 662天 − 85天 = 577天

(参考答案±45天内皆可得分)

相位变化周期反映的是天体与地球的会合周期,又由天体相位可降为0推知天体轨道在地球轨道以内,设天体公转周期为𝑃,地球公转周期𝑃 = 365天,可得:

天体与地球的会合周期

(答案在216-230天之间皆可)

2.3 由上问解答得知天体的轨道周期𝑃 ≈ 0.61 yr,
  设天体轨道半长轴为𝑎,由开普勒第三定律得:

轨道半长轴

2.4 结合天体的低轨道偏心率,轨道位于地球轨道以内以及轨道半长轴等条件,可判断该天体很可能是金星,这是金星的星历表。

2.5 由表2-1可知该天体在当天北京时间16:30上中天。
  提示:上中天时,天体地平高度达到最大值,出现在正南或正北方。由“时分秒”和“度分秒”计量系统的关系可知直接读取表中数据即可满足精度要求。

2.6 由题干的星历表得:
JD=2459495.17时,天体赤经和赤纬分别为𝛼1 = 15ℎ48𝑚31𝑠,𝛿1 = −22°41′19′′
JD=2459505.17时,天体赤经和赤纬分别为𝛼2 = 16ℎ34𝑚28𝑠,𝛿2 = −25°11′48′′

上述区间天体的赤经和赤纬平均变化率为:

区间天体的赤经和赤纬平均变化率

由表2-1查得天体上中天时的儒略日为JD=2459504.85,通过内插法估算天体在上中天时的赤经和赤纬分别为:

通过内插法估算天体在上中天时的赤经和赤纬

代入数据得 𝛼 ≈ 16ℎ33𝑚,𝛿 ≈ −25°7′。
(内插方法合理,计算准确即可)

2.7 天体上中天时的地平高度ℎmax、当地地理纬度𝜁 和天体赤纬𝛿 之间具有如下关系:

max = 90° − |𝛿 − 𝜁| (2分)

由表2-1得ℎmax = 34°41′(2分),结合2.6小问结果解得当地地理经度为:

𝜁=−80°26′或30°12′(每个解1分)

即南纬−80°26′或北纬30°12′。

天体上中天时,天体赤经等于本地恒星时𝑆,即:

𝑆=𝛼=16ℎ33𝑚

已知天体上中天时东经120°地区的恒星时为𝑆0 = 18ℎ14𝑚
观测点的经度𝜆=120°+(𝑆−𝑆0)
代入数据得𝜆=94°45′,即东经94°45′


  更早年份的天文试题资料,也可前往“天文奥赛”网站取得。(https://www.astro-init.top/

  更多海峡两岸天文试题,可在“有趣天文奇观”网站下取得,欢迎多加利用!(https://interesting-sky.china-vo.org/category/cnao/

表情包

  2021年9月25日,第十六届广东省中学生天文知识竞赛暨2022年全国中学生天文知识竞赛广东赛区预赛结束。省赛同时是国赛的选拔赛。2022年CNAO全国赛的预赛将不再接收广东省学籍选手的报名。本次竞赛由广东天文学会和广州市青少年科技教育协会主办,由广州市教育局支持,由广东省青少年科技中心、广东省地理学会教育与科普专业委员会、广州大学物理与材料科学学院、增城区凤凰实验小学协办。该赛事是2019年广东省教育厅批准的第一批面向全省中小学生竞赛活动,参赛人数约6600人,在全省88个考场进行,参与人数创历史新高。本轮初赛将选出100-200名选手参加10月中旬举办的复赛,争夺进入全国决赛的名额。

2021年广东省中学生天文知识竞赛试题(低年组)2021年9月25日下午14:00-16:00 闭卷

注意事项:
1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。
2、选择题全部为单项选择,考生直接在试题页面中点选一个最接近正确的答案,答错不扣分。
3、总分100分,每题2分,考试时间90分钟。
4、本场考试允许使用不具编程功能的计算器。
5、考试开始后45分钟方可交卷。
6、比赛结果将在广东天文学会网站和微信公众号公布。

Part 1. 天文热点

1. 我国的“天问一号”火星探测器在今年5月15日成功释放着陆器携带火星车________登陆火星。(  )
A. 祝融号  B. 火神号
C. 荧惑号  D. 萤火号

2. 北京时间2021年4月19日下午,_________无人机在火星上完成首次试飞,成为首个在地球以外的行星上御风飞行的人造物体。(  )
A. 机智号  B. 毅力号
C. 好奇号  D. 敏捷号

3. 下一次我国境内可见的日食发生在?(  )
A. 2021年12月4日
B. 2022年10月25日
C. 2023年4月20日
D. 2027年8月2日

4. 2020年12月17日,嫦娥五号的返回器成功降落四王子旗,将约_________千克月球样本带回地球。(  )
A. 0.2 B. 0.5 C. 1 D. 2

5. 美国宇航局的________探测器于今年5月从小行星“贝努”踏上返程之旅。(  )
A. 黎明号
B. 隼鸟2号
C. 奥西里斯王号
D. 冥土号

6. 2020年年底,曾为世界上最大的单孔径射电望远镜的___________发生倒塌。(  )
A. 波恩望远镜
B. 绿岸望远镜
C. 帕克斯望远镜
D. 阿雷西博望远镜

7. 今年10月,___________将把3名中国航天员送往中国空间站。(  )
A. 神州十一号
B. 神州十二号
C. 神州十三号
D. 神州十四号

8. ___________曾在今年6月出现故障,一度停止工作。(  )
A. 慧眼硬X射线调制望远镜
B. 盖亚望远镜
C. 哈勃空间望远镜
D. 凌星系外行星巡天卫星

9. 今年在我国境内看不到?(  )
A. 太阳黑子
B. 日环食
C. 英仙座流星雨
D. 土星合月

10. 为了纪念人类首次载人航天任务“东方一号”的成功,每年的4月12日被定为世界航天日。2021年的世界航天日恰是该次任务成功的(  )周年纪念日。
A. 45 B. 50 C. 55 D. 60

Part 2. 基础知识

Ⅰ. 请回答以下10道独立的小题。

11. 以下哪个星座所占天区面积最大?(  )
A. 人马座  B. 南十字座
C. 大犬座  D. 小熊座

12. 月球的年龄约为?(  )
A. 20亿年  B. 30亿年
C. 40亿年  D. 45亿年

13. 一位在南半球念书的留学生发现有两个云雾状天体围绕南天极做周日视运动,它们的视直径分别约为10度和5度,它们最可能是?(  )
A. 大麦哲伦云和小麦哲伦云
B. M31星系和M33星系
C. 猎户座大星云和昴星团
D. M57环状星云和M27哑铃星云

14. 在不同的节气,观测者对同一物体测得的正午日影长度不同,这反映太阳正午高度角在一年里会随时间变化。在广州,以下哪个节气的正午日影最长?(  )
A. 清明 B. 夏至 C. 惊蛰 D. 冬至

15. 两个天体间的万有引力大小反比于它们的?(  )
A. 质量   B. 距离的平方
C. 距离   D. 质量的平方

16. 用双筒望远镜可以比直接用肉眼看到更多星星,这是主要是因为?(  )
A. 双筒望远镜物镜焦距比人眼长,拥有更大的放大率
B. 双筒望远镜物镜直径比人眼瞳孔直径大,拥有较强的聚光本领
C. 双筒望远物镜焦距比人眼长,拥有更小的底片比例尺
D. 双筒望远镜的玻璃质量比人眼晶状体的更好

17. 现行公历平均每年的长度为?(  )
A. 355天
B. 365.25天
C. 365.242天
D. 365.256天

18. 七夕故事中的主角,牛郎星和织女星,与天津四一起构成?(  )
A. 夏季大三角
B. 冬季大三角
C. 春季大三角
D. 秋季大三角

19. 下列哪种天体还没被天文观测证实存在?(  )
A. 褐矮星  B. 中子星
C. 热木星  D. 黑矮星

20. 谷神星是最大的小行星,它的发现者是?(  )
A. 汤博   B. 皮亚齐
C. 伽利略  D. 赫歇尔

Ⅱ. 本部分包含第21-25小题。请在编号①至⑦备选答案中,选取最合适的一项填入下表的空格。并在答题卡上将编号对应的选项用2B铅笔涂黑。每个备选答案在本部分中最多使用1次。
(提示:Pioneer /ˌpaɪəˈnɪr/ 先驱者、开拓者)

2021年广东题图1

2021年广东题图2

21. A. ① B. ③ C. ④ D. ⑥(  )
22. A. ① B. ③ C. ⑤ D. ⑥(  )
23. A. ① B. ③ C. ⑤ D. ⑥(  )
24. A. ② B. ④ C. ⑤ D. ⑦(  )
25. A. ② B. ⑤ C. ⑥ D. ⑦(  )

Part 3. 观测与应用

Ⅰ. 天宫空间站

  我国天宫空间站的核心舱在2021年4月29日顺利升空进入绕地轨道。国内外的天文爱好者已多次在地面观测到核心舱过境闪光。附录中的图1-A是今年的某次过境预报,观测地经度约114.3度;图1-B是天宫空间站的相关资料。请参考图1-A和图1-B,结合现实情况回答26-33小题。

26. 天宫空间站核心舱的名字叫?(  )
A. 问天 B. 梦天 C. 天和 D. 天舟

27. 空间站的过境过程中,与下列哪颗恒星的角距离最小值最大?(  )
A. 玉衡   B. 天津四
C. 开阳   D. 织女星

28. 用一套10°左右视场的设备拍摄,经过后期处理后(不违反天体位置的真实性)我们有可能得到核心舱与下列哪个天体的合照?(  )
A. M13 B. M15 C. M7 D. M16

29. 核心舱过境时,空中最亮的行星是?(  )
A. 木星 B. 金星 C. 土星 D. 月球

30. 织女星赤经为18h 38m,赤纬为38°48′,这次过境事件最可能发生在下列哪个时段?(  )
A. 8月上旬   B. 9月上旬
C. 10月上旬 D. 11月下旬

31. 观测地的纬度约为北纬__________。
A. 67° B. 46° C. 36° D. 23°

天宫空间站32. 右图中从左上到右下的轨迹线是本次过境发生时天宫空间站的星下点轨迹(所谓星下点,即天体在地球表面的投影点),白色“×”标示了与图1-A预报相对应的观测点。如果我们想通过开车转移,捕捉天宫空间站穿过天顶的瞬间,我们可从该观测点出发往哪个方向移动?(  )
A. 东南 B. 西南 C. 东北 D. 正东

33. 关于天宫空间站,下列描述不准确的一项是?(  )
A. 口径30厘米的望远镜不可能分辨出核心舱的太阳能板轮廓
B. 从地面上看,核心舱过境时的亮度有时可以比北落师门还亮
C. 当天宫空间站建成后,过境亮度会整体比现在高
D. 广东的观测者有时可以观测到天宫凌日或者凌月的现象

Ⅱ. 宜居带

  液态水对生命而言,是一种常见且重要的介质。天文学中对宜居带的定义,也多和星球表面是否能稳定存在液态水有关。在上世纪,Kasting等人给出一套经典的宜居带模型(Kasting et al. 1993)。该模型在一个和地球类似的星球上,构建一个以氮气为背景,包含CO2和H2O两种气体的大气,然后分析这个星球拥有不同地表温度时到恒星的距离,判断恒星周围能让星球表面能稳定存在液态水的空间范围,从而划定宜居带。后来Kopparapu等人在Kasting等人的模型上进行了改进(Kopparapu et al.2013),表2-A和图2-A给出了新模型的部分结果。

34. 宜居带的内边界是根据水的散逸情况判定的。如果过于靠近太阳,太阳辐射流量过大,地表上的水将快速汽化并在高能辐射的作用下离解和逃逸到太空中。太阳的辐射流量𝑓与行星轨道半径𝑟的关系是?(  )
A. 𝑓正比于1/𝑟
B. 𝑓正比于1/𝑟²
C. 𝑓正比于𝑟
D. 𝑓正比于𝑟²

35. 宜居带的外边界是以温室效应能让地表温度保持273K为判据的。在比外边界更远离太阳的地方,无地质活动星球的表面,绝大部分地表水的存在形式是?(  )
A. 等离子体  B. 液态
C. 固态    D. 气态

36. 根据表2-A的结果,我们可以发现同等条件下?(  )
A. 太阳周围的宜居带位置与行星大小无关
B. 质量越大的行星,宜居带外边界越远离太阳
C. 质量越大的行星,宜居带越宽
D. 质量越小的行星,宜居带内边界越接近太阳

37. 根据图2-A中Kopparapu等人的计算结果以及表2-B的信息,当一颗和地球相同的行星出现在一颗K5型主序星附近时?(  )
A. 宜居带平均半径约0.3 AU
B. 宜居带宽度约0.31 AU
C. 如果行星的轨道参数与水星一样,它将完全位于宜居带内
D. 如果行星的轨道参数与木星一样,它将位于宜居带内

38. 根据图2-A和表2-B,我们还可以发现?(  )
A. 光度越大的主序星,宜居带越窄
B. 随着主序星光度增大,宜居带内边界在有的阶段反而会向里缩小
C. 随着主序星光度增大,宜居带的外边界始终在缩小
D. 光度越大的主序星,宜居带整体越靠外

39. 我们对宜居行星的判断,总是依赖特定的模型。但任何模型都会有不完善的地方,例如Kopparapu等人的模型对宜居带的判断并没有完整地考虑云层、磁场和其它温室气体等因素的影响。太阳系中有一颗恒星不在计算出的宜居带内,但观测表明它的表面曾经也拥有大面积的液态水,这个行星是?(  )
A. 火星 B. 金星 C. 水星 D. 木星

40. 地球上的温室效应主要由水蒸气和二氧化碳贡献,其中水蒸气的贡献更大。如果阳光的强度降低,表面大气有效吸收的太阳辐射量可能下降得比太阳辐射本身更剧烈,关于上述现象以下推断中最不准确的一项是?(  )
A. 太阳辐射强度降低会减少地表可吸收的太阳能总量,使地表整体降温
B. 地表降温会使永久性冰川面积扩大,增加地球反照率,进一步降低地表对阳光的吸收
C. 全球性降温和永久性冰川大面积扩张可能降低全球大气的含水量,进一步削弱温室效应
D. 地质和生物活动具有影响全球气温的潜力,即使远离宜居带也可让平均温度保持稳定

41. 太阳系内也有一些星球,它们虽然在宜居带的外边界之外,但它们借助其它形式的热源,内部也可能存在大面积的液态水海洋。例如?(  )
A. 月球    B. 木卫二
C. 土卫六   D. 水星

42. 41小题中的天体其维持液态海洋的热源来自?(  )
A. 太阳辐射  B. 生物质能
C. 潮汐加热  D. 引力塌缩

Ⅲ. 摇摆的星点

  距离是天体重要的参数之一,天文学家有很多不同的方法测量天体距离,其中三角视差法是其中一种精确测量近邻恒星距离的方法。如下图所示,如果仅考虑地球的公转运动,一年中对恒星在天球上的位置进行高精度测量,恒星的位置将呈现为一个椭圆型的轨迹,称为视差椭圆,它的半长轴张角就是天体的周年视差。天文学家通过观测获得视差椭圆,即可定出天体的周年视差。

parallactic-ellipse.webp

  发射于2013年的欧洲空间局盖亚(Gaia)卫星于2014年7月25日开始了科学观测,在光学波段扫描全天恒星,获取了它们的位置、周年视差、自行、视向速度等参数。它通过三角视差的方法测定了银河系内超过13亿颗恒星的距离,为我们对银河系的形成和运动状况提供了宝贵的数据。

43. 周年视差是以_________天文单位的有效基线测得的恒星视差。(  )
A. 10 B. 5 C. 2 D. 1

44. 图3-A展示了天赤道附近某恒星去除了自行后的位置变化图。通过椭圆轨迹可测得该恒星的周年视差为?(mas表示毫角秒)(  )
A. 142.1 mas B. 296.3 mas
C. 51.0 mas   D. 107.8 mas

45. 该恒星的距离为?(  )
A. 3.37 pc  B. 7.04 pc
C. 9.80 pc  D. 19.62 pc

46. 根据距离判断,图3-A中测量的最可能是下列哪颗恒星?(  )

parallax.webp

47. 除了视差,恒星还会因自行而出现位置变化。图3-B是上述恒星在自行和周年视差共同作用下4条可能的运动轨迹,原点是轨迹的出发点。根据44小题的结果,请问哪一条轨迹最符合真实情况?(  )
A. ① B. ② C. ③ D. ④

48. 根据46小题的结果,这颗恒星在以下哪个月份在地球上最难被观测?(  )
A. 2月 B. 6月 C. 9月 D. 12月

49. 已知图3-A的恒星视星等为9.65等,它的绝对星等为?(  )
A. 10.4等  B. 9.7等
C. 8.9等    D. 8.2等

50. 已知它的B视星等为11.15等,V视星等为9.65等,它最有可能是一颗?(  )
A. 蓝巨星
B. 白色的主序星
C. 黄色的主序星
D. 红色的亚矮星

附录

天文常数

Ⅰ. 天宫空间站

天宫空间站在2021年内某次过境预报。图1-A 天宫空间站在2021年内某次过境预报。

图1-B 天宫空间站相关资料。图1-B 天宫空间站相关资料。

Ⅱ. 宜居带

表2-A 不同行星在太阳附近的宜居带范围不同行星在太阳附近的宜居带范围

1. 所有模拟星球都拥有相同的表面大气压强和组分比例
2. 内外边界数值指太阳到边界的半径
3. 超级地球的质量取10倍地球质量

表2-B 主序星参数表主序星参数表

不同质量主序星的宜居带外边界与内边界。

图2-A 不同质量主序星的宜居带外边界与内边界(假设行星与地球相似),实线是本题中Kopparapu等人的模型的计算结果。(取自Kopparapu et al. 2013)

Ⅲ. 摇摆的星点

盖亚望远镜测得的某恒星的视差椭圆,椭圆的中心被选为坐标原点。

图3-A 盖亚望远镜测得的某恒星的视差椭圆,椭圆的中心被选为坐标原点。

图3-A 中的恒星加入自行后的运行轨迹。

图3-B 图3-A 中的恒星加入自行后的运行轨迹。

2021年广东低年组答案
1-10    AABDC   DCCBD
11-20  ADADB   BCADB
21-30  CADCA   CDBBB
31-40  DCABC   CBDBD
41-50  BCDAB   BDCAD


2021年广东省中学生天文知识竞赛试题(高年组)2021年9月25日下午14:00-16:00 闭卷

注意事项:
1、本卷为闭卷考试,请答卷人按照自己的真实水平独立完成。
2、选择题全部为单项选择,考生直接在试题页面中点选一个最接近正确的答案,答错不扣分。
3、总分100分,每题2分,考试时间90分钟。
4、本场考试允许使用不具编程功能的计算器。
5、考试开始后45分钟方可交卷。
6、比赛结果将在广东天文学会网站和微信公众号公布。

Part 1. 天文热点

1. 我国的“天问一号”火星探测器在今年5月15日成功释放着陆器携带火星车_________登陆火星表面。(  )
A. 祝融号  B. 火神号
C. 荧惑号  D. 萤火号

2. 北京时间2021年4月19日下午,_________无人机在火星上完成首次试飞,成为首个在地球以外的行星上御风飞行的人造物体。(  )
A. 毅力号  B. 机智号
C. 好奇号  D. 敏捷号

3. 在我国境内,今年5月26日可以观测到(  )
A、月全食  B、日环食
C、日全食  D、日偏食

4. 以下哪颗行星在9月达东大距?(  )
A. 水星 B. 金星 C. 火星 D. 土星

5. 关于筹划多年的平方公里阵列(SKA),下列说法中不准确的一项是?(  )
A. 于今年7月正式启动建设工作
B. 今年4月29日全国人大常委会批准《成立平方公里阵列天文台公约》的决定
C. 今年2月,平方公里阵列天文台正式成立
D. 中频阵列在澳大利亚,低频阵列在南非

6. 2020年年底,曾为世界上最大的单孔径射电望远镜的___________发生倒塌。(  )
A. 波恩望远镜
B. 绿岸望远镜
C. 帕克斯望远镜
D. 阿雷西博望远镜

7. 广州大学天文系于2020年11月成立,计划招收天文专业本科生。目前为止,广东省内有天文学院或者天文系的高校有哪两所?(  )
A. 中山大学、广州大学
B. 华南理工大学、广州大学
C. 华南师范大学、广州大学
D. 暨南大学、广州大学

8. 2021年3月,中国国家航天局与哪个国家/地区联盟的航天公司签署了关于合作建设国际月球科研站的谅解备忘录?(  )
A. 美国   B. 巴基斯坦
C. 俄罗斯  D. 欧盟

9. 下列哪个彗星并非于2021年回归近日点(  )
A. C/2020 T2 Palomar
B. 7P/Pons-Winnecke
C. 15P/Finlay
D. 46P/Wirtanen

10. 今年年中,空间望远镜____________曾因故障停机1个多月。(  )
A. HST    B. GAIA
C. CSST  D. TESS

Part 2. 基础知识

11. 太阳目前处于第25个活动周期,一个太阳活动周期平均长度为?(  )
A. 1年 B. 6年 C. 11年 D. 60年

12. 月球的年龄约为?(  )
A. 20亿年  B. 30亿年
C. 40亿年  D. 45亿年

13. 一位在南半球念书的留学生发现有两个云雾状天体围绕南天极做周日视运动,它们的视直径分别约为10度和5度,它们最可能是?(  )
A. 大麦哲伦云和小麦哲伦云
B. M31星系和M33星系
C. 猎户座大星云和昴星团星团
D. M57环状星云和M27哑铃星云

14. 在不同的节气,观测者对同一物体测得的正午日影长度不同,这反映太阳正午高度角在一年里会随时间变化。在广州,以下哪个节气的正午日影最长?(  )
A. 清明 B. 夏至 C. 立冬 D. 冬至

15. 中国传统的星官“鬼宿”其主体位于哪个星座?(  )
A. 长蛇座  B. 双子座
C. 摩羯座  D. 巨蟹座

16. 用双筒望远镜可以比直接用肉眼看到更多星星,这是主要是因为?(  )
A. 双筒望远镜物镜焦距比人眼长,拥有更大的放大率
B. 双筒望远镜物镜直径比人眼瞳孔直径大,拥有较强的聚光本领
C. 双筒望远镜物镜焦距比人眼长,拥有更小的底片比例尺
D. 双筒望远镜的玻璃质量比人眼晶状体的更好

17. 人类已经向火星发射过不少登陆器,但甚少有登陆金星的项目,本世纪至今更是一次金星登陆任务也没有。以下哪项对金星登陆器的探测任务影响最大?(  )
A. 天文学家对金星不感兴趣
B. 金星表面环境太恶劣,探测器难以长时间工作
C. 金星位于地球轨道以内,很难控制轨道精确制动
D. 金星云层太厚,行星科学家对金星地貌一无所知

18. 奎宿九(仙女座β)的视星等为2等,织女星的亮度约为奎宿九的?(  )
A. 6.3倍  B. 15.9倍
C. 20倍   D. 0.16倍

19. 以下哪一个叙述不正确?(  )
A. 根据目前观测,可观测宇宙内各种组分占比约为:常规物质占5%、暗物质占27%、暗能量占68%
B. 偏离频道的老式电视机会显示满屏雪花(噪声),其中包含来自宇宙微波背景辐射的贡献
C. 因为天体间的引力作用,宇宙膨胀的速度正在减慢
D. 宇宙微波背景辐射存在涨落,温度差异接近十万分之一的量级

20. 分子云是恒星诞生的摇篮。在分子云中,大部分氢以H2的形式存在,难以通过中性氢原子谱线来示踪物质的分布和运动。但有一种丰富度仅次于氢分子的极性分子,在射电波段能产生较强的信号,指示分子气体的踪迹,帮助天文学家了解分子云的物理信息。这种分子是?(  )
A. CH3COOH B. CO
C. N2      D. NO

Part 3. 观测与应用

Ⅰ. 模拟观测

  受现实条件制约,广东省内某天文社从上年至今一直无法组织外出观测活动。为了让社员们了解基本的观测知识,观测部长经过向指导老师申请后,在一个多云的晚上带领社员们用手机和平板开展星空辨认活动。他们利用常见天文App中的AR功能,透过屏幕观测所指方向的天空实况,从而了解现在天空中的天体分布。图1-A和图1-B是活动图中的手机截屏,时间是北京时间。请根据它们回答21-26小题。

21. 观测部长首先介绍春季大三角和春季大圆弧,当他介绍大角星时画面如图1-A所示。此时大角星出现的方位接近?(  )
A. 正南 B. 正北 C. 正东 D. 正西

22. 出现图1-A的画面后,接下来该如何移动屏幕,找到角宿一?(  )
A. 向左移动  B. 向上移动
C. 向下移动  D. 向右移动

23. 在图1-A左下方圈选的位置附近有一个著名的深空天体,它是?(  )
A. M13 B. M35 C. M44 D. M92

24. 当观测部长回到拱极星区时,一位新社员才发现他手机中的画面和别人的不同,具体情况如图1-B所示。观测部长看了他的手机设置,发现这位同学时间设置正确,但没打开定位,所以系统自动获取经纬度失败,导致模拟错误。这位同学的APP选定的观测纬度约?(  )
A. 23°S B. 47°N C. 46°S D. 38°N

25. 这位同学模拟的观测地经度与他真实所在地的经度差约为?(  )
A. 在真实地点以东183°35′
B. 在真实地点以东19°56′
C. 在真实地点以西107°45′
D. 在真实地点以西13°55′

26. 观测日期最有可能是以下哪天?(  )
A. 3月1日  B. 3月16日
C. 4月1日  D. 5月15日

Ⅱ. 宜居带

  液态水对生命而言,是一种常见且重要的介质。天文学中对宜居带的定义,也多和星球表面是否能稳定存在液态水有关。在上世纪,Kasting等人给出一套经典的宜居带模型(Kasting et al. 1993)。该模型在一个和地球类似的星球上,构建一个以氮气为背景,包含CO2和H2O两种气体的大气,然后分析这个星球拥有不同地表温度时到恒星的距离,判断恒星周围能让星球表面能稳定存在液态水的空间范围,从而划定宜居带。后来Kopparapu等人在Kasting等人的模型上进行了改进(Kopparapu et al.2013),表2-A和图2-A给出了新模型的部分结果。

27. 判断宜居带外边界时,模型选取了地表平均温度能保持273K的判据。当地表平均温度小于273K,气压为1标准大气压时,大气中的温室效应主要由哪种物质贡献?(  )
A. H2O   B. N2C. H2CO3  D. CO2

28. 计算宜居带的外边界时,模型会根据水的损失效果判断一个临界距离。当行星过于接近太阳,水将会快速散逸,这过程主要由恒星辐射导致高层大气水分子的离解和逃逸过程主导。但当行星稍微过度接近太阳时,大气中的二氧化碳还能相对保持稳定(例如金星大气),主要原因是?(  )
A. 碳、氧原子的相对原子量比氢大,且碳氧双键的键能比氢氧键的键能大
B. 二氧化碳对高能光子的透明度显著高于水分子
C. 大气内部合成二氧化碳的效率随温度升高而增加,与大量逃逸的二氧化碳达到平衡
D. 二氧化碳的比水的沸点高

29. 根据表2-A的结果,我们可以发现同等条件下?(  )
A. 恒星周围宜居带的位置与行星大小无关
B. 质量越大的行星,宜居带外边界越远离恒星
C. 质量越大的行星,宜居带越宽
D. 质量越小的行星,宜居带内边界越接近恒星

30. 根据图2-A中Kopparapu等人的计算结果以及表2-B的信息,当一颗和地球相同的行星出现在一颗K5型主序星附近时?(  )
A. 宜居带中心半径约0.3 AU
B. 宜居带宽度约0.31 AU
C. 如果行星的轨道参数与水星一样,它将完全位于宜居带内
D. 如果行星的轨道参数与木星一样,它将位于宜居带内

31. 我们对宜居行星的判断,总是依赖特定的模型。但任何模型都会有不完善的地方,例如Kopparapu等人的模型对宜居带的判断并没有完整地考虑云层、磁场和其它温室气体等因素的影响。如果你听到有人说某颗系外类地行星是宜居星球,下面理解中不准确的一项是?(  )
A. 宜居星球至少允许简单的单细胞生物生存
B. 宜居星球表面可能不适合人类生存
C. 宜居星球一定位于宜居带内
D. 发现宜居星球不代表发现外星生命

Ⅲ. 食变星

  一对互相绕转的双星以合适的角度朝向我们时,我们将看到双星相互掩食,产生光变。这类变星天文学家称为食变星。在本届复赛中,我们将要处理涉及食变星观测的问题。现在我们先从理论上做一些简单的模型分析,以及介绍必要的概念。设双星系统中两星质量分别为𝑀1和𝑀2,轨道为正圆形,轨道半径分别为𝑟1和𝑟2,且𝑀1 > 𝑀2,轨道倾角为90°(轨道面与视线平行),辐射流分别为𝐹1和𝐹2,视星等分别为𝑚1和𝑚2,请回答32-41小题。

32. 以下哪种变星不属于食变星(  )
A. 天琴座β型变星
B. 大陵型变星
C. 大熊座W型变星
D. 蒭藁型变星

33. 双星系统中的两颗成员星在引力的作用下围绕公共质心旋转。设运动轨道为圆轨道,下列选项中准确反映两星相对位置关系的示意图是?(  )

双星系统

34. 若双星轨道平面与视线平行,以下哪项正确描述了双星轨道周期𝑇、恒星的质量与轨道半径的关系?(  )

双星轨道

35. 金牛座λ是一颗较明亮的食变星,光变周期约4天,亮度在3.37-3.91等之间变化。主星质量为7.2倍太阳质量,光谱型B3 V型;伴星质量为1.9倍太阳质量,光谱型A4 IV型,变星距离为148 pc。关于金牛座λ系统下列说法最不准确的是?(  )
A. 两颗成员星之间的距离与它们的直径相差不大
B. 伴星的年龄远大于主星的年龄
C. 伴星和主星之间发生过明显的物质交流
D. 伴星正向红巨星演化

36. 我们还可以测量双星的光谱,通过多普勒效应得到成员星的视向速度变化曲线。下面哪项准确反映了视向速度𝑣𝑟随时间𝑡变化情况?(  )

视向速度变化曲线视向速度变化曲线

37. 图3-A是某颗食变星的光变曲线。在一个周期里,光变曲线出现两次极小,较深的一次称为主极小,较浅的一次称为次极小。关于食变星光变曲线的普遍形态,下列观点最准确的是这?(  )
A. 当两星互不遮掩时出现主极小
B. 当表面半径较大的恒星掩盖半径较小的恒星时出现主极小
C. 当表面温度高的恒星掩盖表面温度低的恒星时出现次极小
D. 当质量小的恒星掩盖质量大的恒星时出现次极小

38. 在观测变星时,受现实条件制约,甚少能在一个光变周期内获取完整的光变曲线。天文学家一般需要结合多次观测的数据,通过一定的数学物理方法初步确定变星的周期,然后通过相位图描画出天体的光变曲线。光变曲线的相位一般定义为𝜑 = (𝑡 − 𝑡0)⁄𝑃 − 𝐸,这里𝑃是光变周期,𝑡0是计时起算时刻,对食变星一般选其中一次主极小时刻为𝑡0,𝑡是任意时刻,𝐸是指从𝑡0时刻到𝑡时刻之间经过的主极小次数(不算𝑡0那次)。这样任意时刻𝑡都可以换算为0到1之间的相位值,它表示了该时刻光变周期完成的进度。若某变星的主极小出现在8月3日18:00,光变周期为3.5天,则8月16日0时的相位为?(  )
A. 0 B. 0.25 C. 0.5 D. 0.75

39. 图3-A光变曲线的极小之间,变星的亮度会间隔地维持稳定,形成“平台”,此阶段变星亮度也最高。在“平台”阶段,食双星的遮掩情况是?(  )
A. 互不遮掩
B. 主星掩伴星
C. 伴星掩主星
D. 主星与伴星中心重合

40. 有时候,食变星光变曲线的极小会出现“平底”(非测量误差导致),如图3-B就是其中一个例子。出现这种“平底”结构通常意味着?(  )
A. 轨道偏心率很大
B. 掩食过程中出现全食或环食
C. 两成员星的半径接近
D. 双星发生物质交流

41. 若两星的表面温度𝑇1 > 𝑇2,半径𝑅2 > 𝑅1。当这种“平底”状的极小出现时,次极小和主极小的亮度比为?(  )

2021年广东题

Ⅳ. 摇摆的星点

  距离是重要的参数之一,天文学家有很多不同的方法测量天体距离,其中三角视差法是测量近邻恒星距离最精确的方法。如下图所示,如果仅考虑地球的公转运动,一年中对恒星在天球上的位置进行高精度测量,恒星的位置将呈现为一个椭圆型的轨迹,称为视差椭圆。天文学家通过观测获得视差椭圆,即可定出天体的周年视差。

parallactic-ellipse.webp

  发射于2013年的欧洲空间局盖亚(Gaia)卫星于2014年7月25日开始了科学观测,在光学波段扫描全天恒星,获取了它们的位置、周年视差、自行、视向速度等参数。它通过三角视差的方法测定了银河系内超过13亿颗恒星的距离,为我们对银河系的形成和运动状况提供了宝贵的数据。

42. 周年视差是以_________天文单位的有效基线测得的恒星视差。(  )
A. 10 B. 5 C. 2 D. 1

43. 下列说法中正确的是?(  )
A. 视差椭圆的半短轴张角等于周年视差
B. 视差椭圆的半长轴张角等于周年视差
C. 视差椭圆的半焦距张角等于周年视差
D. 视差椭圆半长轴与半短轴之和的一半等于周年视差

44. 图4-A展示了天赤道附近某恒星去除了自行后的位置变化图。通过椭圆轨迹可测得该恒星的周年视差为?(mas表示毫角秒)(  )
A. 142.1 mas B. 296.3 mas
C. 51.0 mas   D. 107.8 mas

45. 根据距离判断,图4-A中测量的最可能是下列哪颗恒星?(  )

parallax.webp

46. 除了视差,恒星还会因自行而出现位置变化。图4-B是上述恒星在自行和周年视差共同作用下4条可能的运动轨迹,原点是轨迹的出发点。根据44小题的结果,请问哪一条轨迹最符合真实情况?(  )
A. ① B. ② C. ③ D. ④

47. 除自行外,对盖亚卫星来说,以下哪项也会显著影响恒星位置的测量结果?(  )
A. 蒙气差
B. 视宁度
C. 光行差
D. 地球公转过程中日地距离的变化

48. 根据恒星位置的不同,恒星周年视差的轨迹也不一样。当恒星处于哪个位置时周年视差轨迹为一条线段?(  )
A. 北黄极  B. 北银极
C. 黄道上  D. 天赤道上

49. 身在木星的观测者对盖亚卫星非常感兴趣,也发射了木星的盖亚卫星并与地球的盖亚卫星同时开始科学观测。假设木星的观测者需要恒星在天空中画出完整的椭圆轨迹后才能测定视差,那么他们还要观测多久才能测定?(  )
A. 约半年   B. 约10年
C. 约12年  D. 约5年

50. 在得到完整的视差椭圆之后,木星的观测者测得的视差椭圆长轴张角是地球卫星测得的周年视差的几倍?(  )
A. 10.4倍 B. 5.2倍 C. 1倍 D. 0.2倍

附录

天文常数

Ⅰ. 模拟观测

讲解春季大三角时的手机截屏。 下方朝向地面,上方朝向天顶。

左:图1-A,讲解春季大三角时的手机截屏。下方朝向地面,上方朝向天顶。

上图为观测部长的手机画面下图为某社员的手机画面

右:图1-B,讲解北斗七星和北极星时的截屏。上图为观测部长的手机画面,下图为某社员的手机画面。

Ⅱ. 宜居带

表2-A 不同行星在太阳附近的宜居带范围不同行星在太阳附近的宜居带范围

1. 所有模拟星球都拥有相同的表面大气压强和组分比例
2. 内外边界数值指太阳到边界的半径
3. 超级地球的质量取10倍地球质量

表2-B 主序星参数表主序星参数表

不同质量主序星的宜居带外边界与内边界。

图2-A 不同质量主序星的宜居带外边界与内边界(假设行星与地球相似),实线是本题中Kopparapu等人的模型的计算结果。(取自Kopparapu et al. 2013)

Ⅲ. 食变星

某颗食变星的V波段光变曲线。纵坐标是该变星与比较星的V星等差,横坐标是相位(可当作时间)。取自Srivastava & Sinha (1984)。

图3-A 某颗食变星的V波段光变曲线。纵坐标是该变星与比较星的V星等差,横坐标是相位(可当作时间)。取自Srivastava & Sinha (1984)。

食变星 GSC 03090-00153的光变曲线。纵坐标是归一化后的辐射流量,横坐标是相位。取自https://vs-compas.belastro.net/bulletin/issue/2/p6。

图3-B 食变星 GSC 03090-00153 的光变曲线。纵坐标是归一化后的辐射流量,横坐标是相位。取自 https://vs-compas.belastro.net/bulletin/issue/2/p6

Ⅳ. 摇摆的星点

盖亚望远镜测得的某恒星的视差椭圆,椭圆的中心被选为坐标原点。

图4-A 盖亚望远镜测得的某恒星的视差椭圆,椭圆的中心被选为坐标原点。

图3-A 中的恒星加入自行后的运行轨迹。

图4-B 图4-A 中的恒星加入自行后的运行轨迹。

2021年广东高年组答案
1-10    ABAAD  DACDA
11-20  CDADD  BBACB
21-30  CDABC  DDACB
31-40  ADBAB  DCCAB
41-50  DDBAB  DCCDA
高年组第23题因试卷印刷问题,评分时已做作废处理。

广东天文学会、第十六届中学生天文知识竞赛组委


  更多天文试题,可在“有趣天文奇观”网站下取得,欢迎多加利用!(https://interesting-sky.china-vo.org/category/cnao/

资料整理:高良超、杨旸,历表:VSOP87
时刻系东经120度标准时(北京时间),ΔT取70.6秒

地球轨道位置

地球通过轨道近日点 2022/1/4 14:55 距离0.983337AU
地球通过轨道远日点 2022/7/4 15:11 距离1.016715AU

二十四节气

2022/01/05 17:14:03 小寒 太阳视黄经285° 太阳视赤纬-22°36′
2022/01/20 10:39:05 大寒 太阳视黄经300° 太阳视赤纬-20°09′
2022/02/04 04:50:45 立春 太阳视黄经315° 太阳视赤纬-16°20′
2022/02/19 00:43:00 雨水 太阳视黄经330° 太阳视赤纬-11°28′
2022/03/05 22:43:43 惊蛰 太阳视黄经345° 太阳视赤纬-5°55′
2022/03/20 23:33:24 春分 太阳视黄经0°   太阳视赤纬0° 太阳过天赤道,进入北半球
2022/04/05 03:20:13 清明 太阳视黄经15°  太阳视赤纬+5°55′
2022/04/20 10:24:16 谷雨 太阳视黄经30°  太阳视赤纬+11°28′
2022/05/05 20:25:56 立夏 太阳视黄经45°  太阳视赤纬+16°20′
2022/05/21 09:22:35 小满 太阳视黄经60°  太阳视赤纬+20°09′
2022/06/06 00:25:47 芒种 太阳视黄经75°  太阳视赤纬+22°36′
2022/06/21 17:13:50 夏至 太阳视黄经90°  太阳视赤纬最北+23°26′
2022/07/07 10:37:59 小暑 太阳视黄经105° 太阳视赤纬+22°36′
2022/07/23 04:06:58 大暑 太阳视黄经120° 太阳视赤纬+20°09′
2022/08/07 20:29:07 立秋 太阳视黄经135° 太阳视赤纬+16°20′
2022/08/23 11:16:09 处暑 太阳视黄经150° 太阳视赤纬+11°28′
2022/09/07 23:32:17 白露 太阳视黄经165° 太阳视赤纬+5°55′
2022/09/23 09:03:41 秋分 太阳视黄经180° 太阳视赤纬0° 太阳过天赤道,进入南半球
2022/10/08 15:22:26 寒露 太阳视黄经195° 太阳视赤纬-5°55′
2022/10/23 18:35:41 霜降 太阳视黄经210° 太阳视赤纬-11°28′
2022/11/07 18:45:28 立冬 太阳视黄经225° 太阳视赤纬-16°20′
2022/11/22 16:20:28 小雪 太阳视黄经240° 太阳视赤纬-20°09′
2022/12/07 11:46:15 大雪 太阳视黄经255° 太阳视赤纬-22°36′
2022/12/22 05:48:11 冬至 太阳视黄经270° 太阳视赤纬最南-23°26′

七十二候

公历日期     时刻    节气 候次 年候次 干支 太阳视黄经   太阳视赤纬     候应
2022/01/05 17:14:03 小寒 初候 67候  戊午    285°   -22°35′38.87″ 一候 雁北乡
2022/01/10 14:57:37 小寒 次候 68候  癸亥    290°   -21°56′53.07″ 二候 鹊始巢
2022/01/15 12:45:46 小寒 末候 69候  戊辰    295°   -21°07′47.78″ 三候 雉始雊
2022/01/20 10:39:05 大寒 初候 70候  癸酉    300°   -20°08′56.08″ 一候 鸡始乳
2022/01/25 08:37:26 大寒 次候 71候  戊寅    305°   -19°00′54.76″ 二候 征鸟厉疾
2022/01/30 06:40:15 大寒 末候 72候  癸未    310°   -17°44′24.01″ 三候 水泽腹坚
2022/02/04 04:50:45 立春 初候  1候  戊子    315°   -16°20′06.95″ 一候 东风解冻
2022/02/09 03:13:36 立春 次候  2候  癸巳    320°   -14°48′48.31″ 二候 蛰虫始振
2022/02/14 01:50:45 立春 末候  3候  戊戌    325°   -13°11′15.52″ 三候 鱼陟负冰
2022/02/19 00:43:00 雨水 初候  4候  癸卯    330°   -11°28′16.48″ 一候 獭祭鱼
2022/02/23 23:49:08 雨水 次候  5候  丁未    335°    -9°40′38.42″ 二候 鸿雁来
2022/02/28 23:08:18 雨水 末候  6候  壬子    340°    -7°49′08.27″ 三候 草木萌动
2022/03/05 22:43:43 惊蛰 初候  7候  丁巳    345°    -5°54′32.46″ 一候 桃始华
2022/03/10 22:38:46 惊蛰 次候  8候  壬戌    350°    -3°57′37.86″ 二候 仓庚鸣
2022/03/15 22:55:19 惊蛰 末候  9候  丁卯    355°    -1°59′11.56″ 三候 鹰化为鸩
2022/03/20 23:33:24 春分 初候 10候  壬申      0°     0°00′00.09″ 一候 玄鸟至
2022/03/26 00:30:09 春分 次候 11候  戊寅      5°     1°59′11.48″ 二候 雷乃发声
2022/03/31 01:44:59 春分 末候 12候  癸未     10°     3°57′37.47″ 三候 始电
2022/04/05 03:20:13 清明 初候 13候  戊子     15°     5°54′31.98″ 一候 桐始华
2022/04/10 05:18:09 清明 次候 14候  癸巳     20°     7°49′08.12″ 二候 田鼠化为鴽
2022/04/15 07:40:09 清明 末候 15候  戊戌     25°     9°40′38.75″ 三候 虹始见
2022/04/20 10:24:16 谷雨 初候 16候  癸卯     30°    11°28′16.63″ 一候 萍始生
2022/04/25 13:26:40 谷雨 次候 17候  戊申     35°    13°11′15.51″ 二候 鸣鸠拂其羽
2022/04/30 16:46:52 谷雨 末候 18候  癸丑     40°    14°48′48.21″ 三候 戴胜降于桑
2022/05/05 20:25:56 立夏 初候 19候  戊午     45°    16°20′06.90″ 一候 蝼蝈鸣
2022/05/11 00:25:44 立夏 次候 20候  甲子     50°    17°44′24.62″ 二候 蚯蚓出
2022/05/16 04:46:02 立夏 末候 21候  己巳     55°    19°00′55.35″ 三候 王瓜生
2022/05/21 09:22:35 小满 初候 22候  甲戌     60°    20°08′56.51″ 一候 苦菜秀
2022/05/26 14:11:48 小满 次候 23候  己卯     65°    21°07′48.40″ 二候 靡草死
2022/05/31 19:12:30 小满 末候 24候  甲申     70°    21°56′53.46″ 三候 麦秋至
2022/06/06 00:25:47 芒种 初候 25候  庚寅     75°    22°35′39.61″ 一候 螳螂生
2022/06/11 05:52:36 芒种 次候 26候  乙未     80°    23°03′40.04″ 二候 鵙始鸣
2022/06/16 11:30:12 芒种 末候 27候  庚子     85°    23°20′35.66″ 三候 反舌无声
2022/06/21 17:13:50 夏至 初候 28候  乙巳     90°    23°26′16.08″ 一候 鹿角解
2022/06/26 22:59:42 夏至 次候 29候  庚戌     95°    23°20′36.40″ 二候 蜩始鸣
2022/07/02 04:47:19 夏至 末候 30候  丙辰    100°    23°03′40.47″ 三候 半夏生
2022/07/07 10:37:59 小暑 初候 31候  辛酉    105°    22°35′39.64″ 一候 温风至
2022/07/12 16:30:51 小暑 次候 32候  丙寅    110°    21°56′53.10″ 二候 蟋蜂居壁
2022/07/17 22:22:14 小暑 末候 33候  辛未    115°    21°07′48.61″ 三候 鹰乃学习
2022/07/23 04:06:58 大暑 初候 34候  丁丑    120°    20°08′57.52″ 一候 腐草为萤
2022/07/28 09:42:26 大暑 次候 35候  壬午    125°    19°00′56.26″ 二候 土润溽暑
2022/08/02 15:09:37 大暑 末候 36候  丁亥    130°    17°44′24.97″ 三候 大雨行时
2022/08/07 20:29:07 立秋 初候 37候  壬辰    135°    16°20′06.79″ 一候 凉风至
2022/08/13 01:39:32 立秋 次候 38候  戊戌    140°    14°48′48.40″ 二候 白露降
2022/08/18 06:36:43 立秋 末候 39候  癸卯    145°    13°11′16.51″ 三候 寒蝉鸣
2022/08/23 11:16:09 处暑 初候 40候  戊申    150°    11°28′17.78″ 一候 鹰乃祭鸟
2022/08/28 15:37:44 处暑 次候 41候  癸丑    155°     9°40′39.27″ 二候 天地始肃
2022/09/02 19:42:52 处暑 末候 42候  戊午    160°     7°49′08.01″ 三候 禾乃登
2022/09/07 23:32:17 白露 初候 43候  癸亥    165°     5°54′31.86″ 一候 鸿雁来
2022/09/13 03:04:49 白露 次候 44候  己巳    170°     3°57′38.08″ 二候 玄鸟归
2022/09/18 06:15:52 白露 末候 45候  甲戌    175°     1°59′12.51″ 三候 群鸟养羞
2022/09/23 09:03:41 秋分 初候 46候  己卯    180°     0°00′00.63″ 一候 雷乃收声
2022/09/28 11:29:26 秋分 次候 47候  甲申    185°    -1°59′11.86″ 二候 蛰虫坯户
2022/10/03 13:35:01 秋分 末候 48候  己丑    190°    -3°57′38.51″ 三候 水始涸
2022/10/08 15:22:26 寒露 初候 49候  甲午    195°    -5°54′32.62″ 一候 鸿雁来宾
2022/10/13 16:49:47 寒露 次候 50候  己亥    200°    -7°49′07.76″ 二候 雀入大水为蛤
2022/10/18 17:54:09 寒露 末候 51候  甲辰    205°    -9°40′38.08″ 三候 菊有黄华
2022/10/23 18:35:41 霜降 初候 52候  己酉    210°   -11°28′17.00″ 一候 豺乃祭兽
2022/10/28 18:55:58 霜降 次候 53候  甲寅    215°   -13°11′16.75″ 二候 草木黄落
2022/11/02 18:58:27 霜降 末候 54候  己未    220°   -14°48′49.45″ 三候 蛰虫咸俯
2022/11/07 18:45:28 立冬 初候 55候  甲子    225°   -16°20′07.30″ 一候 水始冻
2022/11/12 18:15:10 立冬 次候 56候  己巳    230°   -17°44′24.11″ 二候 地始冻
2022/11/17 17:26:37 立冬 末候 57候  甲戌    235°   -19°00′55.49″ 三候 雉入大水为蜃
2022/11/22 16:20:28 小雪 初候 58候  己卯    240°   -20°08′57.76″ 一候 虹藏不见
2022/11/27 14:58:55 小雪 次候 59候  甲申    245°   -21°07′49.78″ 二候 天气上腾地气下降
2022/12/02 13:26:54 小雪 末候 60候  己丑    250°   -21°56′54.51″ 三候 闭寒成冬
2022/12/07 11:46:15 大雪 初候 61候  甲午    255°   -22°35′39.49″ 一候 鹖鴠不鸣
2022/12/12 09:56:10 大雪 次候 62候  己亥    260°   -23°03′39.87″ 二候 虎始交
2022/12/17 07:56:39 大雪 末候 63候  甲辰    265°   -23°20′36.68″ 三候 荔挺出
2022/12/22 05:48:11 冬至 初候 64候  己酉    270°   -23°26′17.30″ 一候 蚯蚓结
2022/12/27 03:33:47 冬至 次候 65候  甲寅    275°   -23°20′37.59″ 二候 麇角解
2023/01/01 01:18:49 冬至 末候 66候  己未    280°   -23°03′40.84″ 三候 水泉动

参考资料:GB/T 33661-2017 农历的编算和颁行.pdf

2022年天象预报资料,可在“有趣天文奇观”网站下取得,欢迎多加利用!
https://interesting-sky.china-vo.org/category/year/2022astronomical_events/


相关资料:

发布单位:台北市立天文科学教育馆

  大红斑是木星大气中持久的大型反气旋,就像地球上的台风一样,但规模要大得多。没有人知道大红斑何时出现在木星上,但从四个世纪前人们开始通过望远镜观察木星以来,它就在那里。

  在地球上,我们使用轨道卫星和追风飞机密切地追踪主要的风暴;在木星上,我们没有风暴追逐飞机,无法在现场实地测量,但依靠如同太阳系行星的「风暴观察者」哈勃太空望远镜十多年长期的观测,让我们可以详细地捕捉并记录到木星的风暴。

哈勃显示木星大红斑的风正在加速

  分析哈勃「风暴报告」的研究人员发现,在这个巨大且持续几个世纪的风暴系统中,外缘风的速度比内道更快,并且还在继续加速中。风暴边界内的平均风速(称为高速环)从2009年到2020年间增加了8%,相较之下,最内层区域的移动速度明显减慢。

  研究人员表示使用哈勃望远镜测量到的风速变化每年(地球年)小于2.5公里/时,如此小的变化,若没有11年的哈勃数据根本无法发现,而有了哈勃太空望远镜持续的监测,我们才有了发现趋势所需的精确度。

  在过去的十多年中,大红斑的平均风速略有增加,但是什么推动了风暴外围的强风,目前尚不清楚。哈勃无法很好的看到风暴的底部,云顶以下的任何东西在数据中都是不可见的,这个有趣的数据,可以帮助我们了解是什么推动大红斑,以及它如何维持能量,但想要完全理解它,还有很多工作要做。

  自1870年代以来,天文学家一直在研究大红斑,它目前直径约16,100公里,大到足以吞没地球,但在过去的一个世纪里一直在缩小,且变得比椭圆形更圆。另外,研究人员还观察到其他行星上的风暴,例如海王星,它们往往在行星表面游走,并在几年内消失。像这样的研究不仅可以帮助科学家了解个别行星,还可以得出关于驱动和维持行星风暴的潜在物理学结论。该研究发表于《Geophysical Research Letters》期刊上。(编译/台北天文馆赵瑞青)

资料来源:SciTechDaily