发布单位:台北市立天文科学教育馆

  Quaoar是一颗海王星外天体或简称海外天体(trans-Neptunian objects, TNOs),也称为2002 LM60,在2002年6月4日由帕洛马山天文台所发现。其直径约1,100公里,位于柯伊伯带,这是一个由类似彗星状天体组成的冰冷碎片带,轨道距离太阳45.1~45.6个天文单位,周期为284.5年。它有一颗已知的卫星Weywot,于2007年2月22日发现,直径约为80公里,运行在Quaoar的24个半径外。此次新发现的环在距离Quaoar7.4个半径处运行,这比土星环到土星的距离要远得多。

一位艺术家对矮行星Quaoar及其光环的想象。左边一颗是Quaoar的卫星Weywot。An artist’s impression of the dwarf planet Quaoar and its ring. Quaoar’s moon Weywot is shown on the left. Image credit: ESA / CC BY-SA 3.0 IGO.
图说:矮行星Quaoar及其环的示意图,Quaoar的卫星Weywot在其左侧。图片来源:ESA / CC BY-SA 3.0 IGO

  研究团队表示不仅在巨行星周围观察到行星环,在10199女凯龙星(Chariklo)和矮行星Haumea等小天体周围也观察到行星环,到目前为止,所有已知的致密环都位于其母行星足够近的地方。而Quaoar的环系统之所以引人注目,是因为它位于超过7个行星半径的距离,是以往根据洛希极限环形系统被认为能够存在最大半径的两倍。相较之下,土星周围的主环位于3个行星半径内,因此这个发现,迫使科学家重新思考环的形成理论。

  这次的发现是使用ESA的CHEOPS太空望远镜和一系列地面仪器完成的,但由于环太小太暗,无法直接在影像中看到,因此天文学家借由观察到掩星的现象而发现环的存在,当时来自背景恒星的光被Quaoar挡住了,虽然整个过程不到一分钟,但出乎意料的是之前和之后都有两次光线下降,这表示Quaoar周围有一个环形系统。研究人员表示在太阳系中发现这个新的环形系统是出乎意料的,而且在离Quaoar如此遥远的地方发现这些环更加出乎意料,它更是挑战了我们之前对于此类环是如何形成的观念。

  这是一个谜,因为根据传统思维,超过洛希极限的光环将会在几十年内合并成一颗小卫星。致密环仅在行星洛希极限内存在的观念可能需要修正,早期结果表明Quaoar的寒冷温度可能在防止冰颗粒黏在一起方面发挥了作用,但还需要进行更多调查,也希望这一新发现能够进一步了解土星环是如何形成的。相关研究成果将发表于《Nature(自然)》期刊上。(编译/台北天文馆赵瑞青)

这张是由NASA新视野号于2016年7月14日拍摄到Quaoar的假色影像。此合成图像除了背景恒星外,还包括24个单独的LORRI图像,及两个星系(IC 1048和UGC 09485)。图片来源:NASA / 约翰·霍普金斯大学应用物理实验室 / 西南研究所。This false-color image, taken at 00:06 UTC on July 14, 2016 by NASA’s New Horizons spacecraft, shows the Kuiper Belt object Quaoar. This composite image includes 24 individual LORRI images. In addition to many background stars, two galaxies (IC 1048 and UGC 09485) are also visible in this image. Image credit: NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute.
图说:这张是由NASA新视野号于2016年7月14日拍摄到Quaoar的假色影像。此合成图像除了背景恒星外,还包括24个单独的LORRI图像,及两个星系(IC 1048和UGC 09485)。图片来源:NASA / 约翰·霍普金斯大学应用物理实验室 / 西南研究所。

资料来源:SCI-NEWS

发布单位:台北市立天文科学教育馆

艺术家的作品展示了一颗灰色、形状不规则的小行星。
This artist's impression shows a grey, irregularly-shaped asteroid against a dark background. Credit: N. Bartmann (ESA/Webb), ESO/M. Kornmesser and S. Brunier, N. Risinger (skysurvey.org)

  欧洲天文国际研究团队使用韦伯太空望远镜发现了一颗以前不为人知100-200公尺的小行星。他们使用中红外仪器(MIRI)校准的数据,偶然发现了一颗小行星。该天体可能是迄今为止韦伯观测到的最小天体。

  太阳系中的小行星和小型岩石天体,天文学家目前知道的太阳系早期这些岩石遗迹超过110万个。韦伯太空望远镜在红外波长下探索这些天体的能力有望带来开创性的新科学,一组研究团队表明:韦伯还具有意外发现以前未知的小天体之能力。

  德国马克斯普朗克地外物理研究所的天文学家Thomas Müller表示:我们完全出乎意料地在公开的MIRI校准观测中发现了一颗小行星,这些观测是针对黄道面的首批MIRI观测中的一些,我们的研究表明,许多新天体将被MIRI探测到。

  揭示这颗小行星的韦伯观测最初并不是为了寻找新的小行星而设计的,事实上它们是天文学家在1998年发现的主小行星带(10920) 1998 BC1的校准图像,但校准团队认为它们由于目标的亮度和偏移的望远镜指向之技术原因而失败。尽管如此,该研究团队还是使用小行星10920上的数据来建立和测试一种限制天体轨道并估计其大小的新技术。使用MIRI观测结合地面望远镜和欧洲太空总署盖亚任务的数据,证明了该方法对小行星10920的有效性。

  在分析MIRI数据的过程中,该研究团队在同一视野中发现了较小且以前不为人知的天体。研究团队的结果表明,该天体的尺寸为100-200公尺,轨道倾角非常低,并且在韦伯观测时位于主带区域的内部。

  Müller表示:我们的结果表明,如果你有正确的心态和一点点运气,即使是‘失败的韦伯观察数据也可以在科学上有用。我们的探测位于主小行星带,韦伯令人难以置信的灵敏度使我们有可能在超过1亿公里的距离看到这个大约100公尺的物体。

  这颗小行星的探测,如果被确认为是新的小行星,将对我们理解太阳系的演化具有重要意义。

  目前的模型预测小行星非常小,但是由于难以观察这些天体,因此对小的小行星研究不如对大的小行星的详细研究。未来韦伯观测将使天文学家能够研究小于1公里的小行星,提供必要的数据来完善我们的太阳系形成模型。

  更重要的是,这一结果表明,韦伯也将能够为新小行星的探测做出贡献。该研究团队怀疑即使是靠近太阳系平面的短期MIRI观测也总是会包括一些小行星,其中大部分是未知天体。

  为了确认探测到的天体是一颗新发现的小行星,后续研究需要更多相对于背景恒星的位置数据来限制天体的轨道。

  该研究发表在《Astronomy & Astrophysics》杂志上。(编译/台北天文馆施欣岚)

资料来源:Phys.org

发布单位:台北市立天文科学教育馆

  2023年1月27日上午8时29分,一颗直径约4到8公尺,大约是一辆卡车大小的小行星2023 BU,以距地表不到4,000公里的高度飞掠地球的南美洲上空!这是目前观测中最接近地球的小行星之一,如果它坠入地球大气层,预估将会变成一颗明亮的火流星,甚至有机会留下一些陨石碎片。

近地小天体2023 BU轨道预测图。图片来源:JPL
图说:近地小天体2023 BU轨道预测图。图片来源:JPL

  来自克里米亚的业余天文学家Gennadiy Borisov在1月21日通报发现了小行星2023 BU,仅仅在这颗小行星最接近地球的6天之内!根据喷射推进实验室(JPL)的小天体资料库(SBDB)计算结果,这颗小行星最接近地表的距离是3,589公里,但不会撞击地球。在掠过地球上空后,小行星的行进方向受到地球重力影响,轨道将明显改变,绕日周期将自0.98年变为1.16年,不过在未来100年内撞击地球的机率不高于万分之一。

小行星2023 BU实际影像。影像来源:Virtual Telescope Project
图说:小行星2023 BU实际影像。影像来源:Virtual Telescope Project

  其实直径达8公尺的小天体撞击地球的频率大约是5年1次,而4公尺大小的天体则几乎是每年都有机会撞击地球。即使如此,监测这些近地天体仍然是非常重要的工作,不只是防范地表遭受陨石撞击,在现在大量使用卫星通讯的时代更为重要。例如是这次2023 BU已经侵入到地球的中地球轨道(MEO)内,也就是比所有的同步卫星都还要接近地球,若能及早侦测这些天体的位置,将有机会可以避免近地天体对于人造卫星的危害。(编辑/台北天文馆谢翔宇)

资料来源:JPLNASA

发布单位:台北市立天文科学教育馆 观赏方式:需以口径10公分(4吋)以上的天文望远镜观赏 可拍照

  小行星智神星(2 Pallas)于2023年1月9日3时02分到达「冲」的位置,也就是地球位于中心,而太阳和智神星位于地球两侧、且赤经经度相差180度的位置。此时智神星位于大犬座,亮度约7.7等,在冲的前后数日几乎整晚可见,越接近午夜仰角越高,更是观测智神星的最佳时机,可使用8~10公分以上的天文望远镜,或以望远镜搭配相机记录智神星在背景星空移动的轨迹。

  智神星于1802年发现,是继谷神星后所发现的第2颗小行星(谷神星于2006年IAU重新定义为矮行星)。其形状略微不规则,直径约544公里,仅次于谷神星;而其大小虽然比灶神星稍大,但质量却比灶神星轻,是小行星带中第二重的小行星,约占整个主小行星带质量的7%。(编辑/台北天文馆赵瑞青)

VLT-SPHERE所拍摄智神星影像。图片来源:ESO/Vernazza et al.
VLT-SPHERE所拍摄智神星影像。图片来源:ESO/Vernazza et al.

2023年1月9日3时2分智神星位置示意图。
2023年1月9日3:02智神星位置示意图。以上示意图由Stellarium软体产生。

发布单位:台北市立天文科学教育馆

  2022年12月27日,科学家进行一颗小行星反射无线电信号的实验测试,预备用于2029年一颗大的小行星接近地球,到时候它比地球静止轨道卫星还更靠近我们。

  位于美国阿拉斯加州加科纳的高频活跃极光研究计划研究站(High-frequency Active Auroral Research Program research program, 缩写HAARP。)将对一颗直径约152公尺的小行星2010 XC15发送无线电信号,并让新墨西哥州索科罗附近的新墨西哥大学长波阵列(Long Wavelength Array)、和加州毕晓普附近的欧文斯谷无线电波天文台天线阵列(Owens Valley Radio Observatory Long Wavelength Array)接收信号回来。

  这将是第一次借由HAARP来探测小行星。实验计划首席研究员兼美国喷气推进实验室JPL的雷达系统工程师Mark Haynes说:「这次的新尝试,我们要用长波的雷达和无线电波望远镜从地面探测小行星内部。使用比通讯的无线电波更长的波长穿透物体的内部。」

  对于如何防御小行星撞击,更需要先了解小行星的内部,尤其是直径大到对地球具有杀伤力的小行星。

  Haynes说:「如果你知道质量分布,就能更有效地使用撞击器,因为你会知道小行星的何处是最佳撞击点。」

  现在有许多方式可以快速探测小行星,例如确定它们的轨道和形状,获得地表样貌的模拟图。无论是使用光学望远镜,还是深空网路Deep Space Network(DSN)的行星雷达。深空网路是NASA在美国加州、西班牙和澳洲的跨国巨型无线电天线阵列。(编按:另见本馆天文新知介绍,太阳系探测任务的通讯支柱:NASA的深空网路)以往雷达成像研究计划使用的是短波长讯号,这些讯号会被物体反射,提供高品量的地表样貌,但不会穿透物体。

  HAARP将以略高和略低于9.6兆赫兹(每秒960万次)的频率向小行星2010 XC15,以两秒为间隔持续发送重複的讯号。Haynes说:「距离将是一个挑战,因为这颗小行星与地球届时的距离将是月球的两倍。」(编按:另见本馆天象预报,2022/12/28 2010 XC15小行星近地 (近地指数2)

  小行星2010 XC15的测试实验是为了2029年小行星(99942) Apophis将接近地球之故。小行星(99942) Apophis于2004年发现,预计2029年4月13日最接近地球,距离地球约32,186.9公里以内,比人造卫星更靠近地球(地球静止轨道卫星大约在37,014.9公里)。NASA估计这颗小行星的直径大约335公尺,原本以为它会在2068年近地,但经过研究人员更精准地预测它的轨道,后来修正为2029年。

  小行星2010 XC15的测试和 (99942) Apophis在2029年的接近,是科学家研究近地天体的好机会,再加上行星防御也让这项科学研究成为显学。

  Haynes说:「在影响发生之前的时间越长,尝试偏转它的选择就越多。」NASA表示,大约每年会有一颗汽车大小的小行星撞击地球,在到达地球表面之前被大气层燃成火球烧成灰烬。而大约每2,000年就有一颗足球场大小的流星撞击地球,这种会造成很大的伤害。至于大到足以毁灭文明的小行星,每隔几百万年就会撞击地球一次。

  NASA的双小行星改道测试计划Double Asteroid Redirection Test mission,DART于2022年9月26日撞击成功,将小卫星Dimorphos的轨道时间改变了32分钟。

  2022年12月27日的实验可以测试借由长波的无线电讯号探测小行星的可行性,以增进我们对近地天体的了解。Haynes表示:「如果我们能启动地面系统的运作,那么我们就有很多机会了解对这些物体内部的结构。」(编译/台北天文馆潘康娴)

这张示意图显示小行星2010 XC15在2022年12月27日经过地球时的投影路径。 图片来源:NASA/JPL/Caltech
图说:这张示意图显示小行星2010 XC15在2022年12月27日经过地球时的投影路径。 图片来源:NASA/JPL/Caltech

资料来源:Phys.org

发布单位:台北市立天文科学教育馆 观赏方式:需以口径20公分(8吋)以上的天文望远镜观赏 可拍照 ★★

  2010 XC15小行星属于近地小行星,即将在2022年12月27日星期二世界协调时间UTC18时15分,国内时间为12月28日凌晨2时15分,以每秒10公里的速度与地球擦肩而过。届时最接近地球的距离约77万2293公里,为2倍的月球距离(Lunar Distance指地球与月球之间的距离38万4400公里),可摆上60颗地球大小。

  2010 XC15小行星公转太阳一圈约230天。其直径估计可能138-308公尺之间,与足球场差不多大,所能反射阳光的面积较小。目前星等约16.5等位于长蛇座,最接近的时候位于牧夫座,增亮至13.4等,建议使用天文望远镜观测为佳。2010 XC15小行星下一次接近地球的时间是2027年12月19日,届时它与地球的距离为762万公里。

  因轨道相当靠近地球,2010 XC15小行星也列入撞击地球高风险的潜在威胁小行星清单,并密切追踪观测,以获得轨道力学所需的数据,计算其精确的位置。根据美国NASA的喷射推进实验室JPL高精确的轨道计算,2010 XC15小行星近期不会撞击地球。

2022年12月27日18时15分(UTC),2010 XC15小行星以两倍的月球距离飞掠地球。
图说:2022年12月27日18时15分(UTC),2010 XC15小行星以两倍的月球距离飞掠地球。

  说明:「近地指数」为本馆针对天体近地预报使用名词。根据天体与地球之间的距离是几倍的月球距离 Lunar distance(缩写LD,指地球与月球之间的距离38万4400公里),LD的倍数数字越大,表示天体距离地球越远。例如本预报的小行星近地时与地球之间的距离为两倍的LD,借用以标示近地指数为2。(编辑/台北天文馆潘康娴)

发布单位:台北市立天文科学教育馆

  自日本隼鸟二号(Hayabusa2)带着样品返回地球之后,近两年的今天,巴黎地球物理研究所、巴黎西岱大学和法国国家科学研究中心公布了(162173) Ryugu龙宫小行星岩土样本组成:锌和铜的同位素。这两个同位素的特征表示龙宫小行星的成分接近于Ivuna碳质球粒陨石,与Ryugu类似的物质在外太阳系约占5-6%的地球质量。这篇研究论文于2022年12月12日发表于《Nature Astronomy》期刊。

  以往科学家借由在地球上发现的陨石,来推敲早期太阳系的样貌。然而,日本宇宙航空研究开发机构JAXA的隼鸟二号,于2020年12月带着5公克取自龙宫小行星的碎片返回地球。对研究太阳系形成的科学领域而言,这是突破关键的一步,因直接带回来的碎片较不会受到地球环境的风化作用而改变,科技的进步提高研究的可行性:直接分析最纯粹的样本。

  研究团队首次公布分析样本的结果,他们发现龙宫小行星的成分与Ivuna类碳质球粒陨石(Ivuna-like carbonaceous chondrites, CI)最接近,一种在化学上是最原始的陨石组成(编按:含水和有机物的陨石),其元素丰度的比例最接近太阳。然而,一些同位素的特征(例如:钛和铬)和碳质球粒陨石其他亚群的特征有些重叠,因此龙宫小行星和碳质球粒陨石之间的关联性还未能全盘了解。

  锌和铜是两种中度挥发性的元素,是研究类地行星形成过程的关键特征。不同亚群的碳质球粒陨石会有不同锌与铜的同位素比例,其中CI球粒陨石更是富含挥发性元素。详细调查研究龙宫小行星锌与铜的同位素,科学家们获得了研究小行星起源的关键工具。他们发现龙宫小行星的锌与铜的同位素比例,和CI球粒陨石几乎相同,而与其他类型的陨石有所差异。由于龙宫小行星和CI球粒陨石的相似性,让科学家可利用龙宫小行星样本中的锌与铜之同位素比例,作为代表太阳组成物质的最佳评估工具。

  另外,龙宫小行星的锌同位素也可以用于研究在地球上中度挥发物质的增长过程,这对于了解行星发展适居带的细节十分重要。研究团队也说明类似龙宫小行星的物质,在行星盘约有5%的地球质量。(编译/台北天文馆潘康娴)

研究人员手上拿着(162173) Ryugu龙宫小行星的样本。
图说:研究人员手上拿着(162173) Ryugu龙宫小行星的样本。

资料来源:Phys.org

发布单位:台北市立天文科学教育馆 观赏方式:需以口径20公分(8吋)以上的天文望远镜观赏 可拍照

  (4356) Marathon马拉松小行星将于2022年12月10日来到离地球最近的位置,这天距离地球2.357个天文单位约3亿5000万公里,需跑个836万趟全马42.195公里的马拉松。这天马拉松小行星落在御夫座Auriga,满月过后的第三天,受月光影响,视星等17.9,建议使用天文望远镜观测较佳。

  马拉松小行星的轨道位于火星与木星之间,属于主带小行星,1960年10月17日由美国加州的帕洛马天文台Palomar observatory所发现。大小约11公里,以微椭圆轨道离心率约0.19,平均轨道半径为2.79个天文单位,对太阳绕行一圈需要4.68年的时间。

  这颗小行星的名字——马拉松,与长距离跑步运动的马拉松赛事同名。马拉松长跑以纪念发生在地中海地区,西元前490年波斯侵略希腊时,希腊传令兵菲迪皮德斯Pheidippides从马拉松回雅典的报捷长跑。在一个通讯及交通不便的时代,day-runners就是前线部队和其他地区之间的联系,日跑者的生理要能承担长时间的有氧运动与肌耐力,更挑战心理上的意志力。菲迪皮德斯在希腊军队中,是长跑训练有素的传令兵,可说是Pro级的长跑职人。当希腊以寡击众面对波斯大军,联络各方人马的重任,让菲迪皮德斯奔于马拉松-雅典-斯巴达之间,三天内来回于崎岖的原野路。以今日来看,总里程可是大约600公里的超长距离越野跑。在他跑到生命终点前,最后一趟约40公里,从马拉松将希腊战胜的消息率先带回雅典,以惊人的体力和强大的意志力完成使命。

  12月的台湾地区共有约50场大大小小的马拉松比赛。12月10日台湾马拉松赛事——云林北港妈祖盃与花莲太鲁阁峡谷马拉松,恰逢当日马拉松小行星将接近地球,带着宇宙来的祝福给所有参赛者和未来即将出境比赛的台湾马拉松选手们顺利完赛。(编辑/台北天文馆潘康娴)

(4356) Marathon马拉松小行星于2022年12月10日晚间10时的位置示意图,在御夫座以红色十字中心标记马拉松小行星。
图说:(4356) Marathon马拉松小行星于2022年12月10日晚间10时的位置示意图,在御夫座以红色十字中心标记马拉松小行星。以上示意图由Stellarium软体产生。

发布单位:台北市立天文科学教育馆

  2022年9月26日,双小行星改道测试(Double Asteroid Redirection Test,简称DART)任务成功撞击,该任务是为了测试小行星防御技术的可行性,以避免大型太空岩石与地球相撞的可能性,尽管在目前为止可预见的未来里不会有这样的事件发生,科学家仍认为这项任务是有必要测试的。DART的目标是将双卫一(Dimorphos)的轨道周期缩短至少73秒,但科学家希望能达到接近10分钟的效果。

  在10月11日的新闻记者会上,美国太空总署发布了首批计算结果,DART超越了这些里程碑,将双卫一原先近12小时的轨道周期缩短了32分钟,这是人类有史以来第一次改变了天体轨道。当DART于9月26日以每秒6.6公里的速度撞向双卫一的过程中,科学家透过DART所传回地球的影像,第一次清楚看见双生星(Didymos & Dimorphos),因为从地球上看,这个双小行星系统看起来就像恒星中的一个小点,当DART任务科学家Tom Statler看见这块碎石的一刹那,直觉告诉他:这绝不会只有73秒。

双卫一的轨道周期变化记者会上,Statler发布了一张来自LICIACube的新影像,在经过了影像处理增加对比度后,更清楚地展示了碎片的细节。此外,NASA还分享了一张由哈勃太空望远镜拍摄的双生星照片,其中显示了锥状碎片长尾,它延伸到太空中至少长1万公里,并且其尾部已经一分为二,科学家仍在了解这种分叉的原因。
图说:双卫一的轨道周期变化记者会上,Statler发布了一张来自LICIACube的新影像,在经过了影像处理增加对比度后,更清楚地展示了碎片的细节。此外,NASA还分享了一张由哈勃太空望远镜拍摄的双生星照片,其中显示了锥状碎片长尾,它延伸到太空中至少长1万公里,并且其尾部已经一分为二,科学家仍在了解这种分叉的原因。

LICIACube拍摄下撞击时的影像。
图说:LICIACube拍摄下撞击时的影像。

哈勃望远镜拍摄的双生星。
图说:哈勃望远镜拍摄的双生星。

  目前科学家宣布的32分钟轨道变化仍伴随着2分钟的不确定性,科学家希望进一步缩小不确定性,并寻找撞击造成的任何潜在轨道摆动,对双生星的观察将持续到2023年,欧洲太空总署预计在2024年发射一艘名为「赫拉」的太空船,它将用于探测双生星的后续影响,并将更详细地记录该系统的各种参数,新闻记者会的内容发表于YouTube-NASA官方频道。(编译/台北天文馆技佐许晋翊)

资料来源:Space.comNASA

发布单位:台北市立天文科学教育馆

  经过10月的飞行,美国马里兰州的约翰霍普金斯大学应用物理实验室(Johns Hopkins Applied Physics Laboratory, JHUAPL)的任务控制中心宣布:「NASA的双小行星改道测试Double Asteroid Redirection Test(缩写:DART),于协调世界时间(Universal Time Coordinated)2022年9月26日23时14分(北京时间2022年9月27日上午7时14分)成功地撞击目标小行星Dimorphos。」

  我们需要拥有保护地球的能力,免于来自小行星或彗星的毁灭性撞击,这回的任务提供了防御所需的详尽资料,也表示人类能够主动出击防止这类型的自然灾害。DART以撞击小行星之伴星Dimorphos的方式,首次尝试在太空中移动小行星,让科学家们评估减缓技术的可行性。美国太空总署署长说:「DART任务代表了防御行星撞击地球的空前成功,还将科幻小说变成了科学事实,展示了一种保护地球的方法。」

  伴星Dimorphos的大小约160公尺,绕着Didymos(直径约780公尺),这对双小行星系统为DART的目标,其轨道不会为地球构成威胁。这回,NASA成功地展示了利用飞行器,载重约570公斤,以每小时约22,530公里的速度,「故意」与小行星之伴星Dimorphos相撞,让小行星减速改变轨道,这个技术称为动力撞击。

  飞行器另携带一台微型卫星相机LICIACube(由意大利太空总署提供),近距离地记录撞击过程,并一张张地回传影像,另外,全球各地望远镜与太空望远镜也同步进行观测与纪录。预估这次撞击会将Dimorphos的轨道缩短约1%(约减少10分钟的轨道周期)。在接下来的几周,天文学家将着手进行研究Dimorphos的新轨道,精确地测量轨道的改道程度,以确定DART对小行星撞击的有效程度。其结果有助于验证,和增进计算轨道动力学的预测模型之精确度。

  天文学家也正加速找出有潜在撞击地球风险的近地小行星,而今日有了DART的测试结果,对未来的应变对策,更能提供具体的参考资讯,为保卫地球的安全,迈出扎实的一步。(编译/台北天文馆潘康娴)

白色线为原本的轨道,蓝色线为经DART撞击后,所预测的新轨道。(图片来源:NASA/JHUAPL)
图一:白色线为原本的轨道,蓝色线为经DART撞击后,所预测的新轨道。(图片来源:NASA/JHUAPL)

本次任务的目标,右下为Didymos,左上为伴星Dimorphos。(图片来源:NASA/JHUAPL)
图二:本次任务的目标,右下为Didymos,左上为伴星Dimorphos。(图片来源:NASA/JHUAPL)

资料来源:Science Daily