发布单位:台北市立天文科学教育馆

  太阳系中除了木星、土星、天王星和海王星等大型天体之外,有着奇怪形状的10199号小行星「女凯龙星(10199 Chariklo)」和矮行星之一的妊神星(Haumea)这两个太阳系小天体也拥有光环。根据最新研究指出:这两颗天体由于其不规则形状之故,所以不需要动用牧羊犬卫星(shepherd moon),仅需借由自身引力和快速自转就可以制造并维持光环不致崩散。康乃尔大学天文物理与行星科学中心(Cornell Center for Astrophysics and Planetary Science)Maryame El Moutamid等人的相关论文发表在自然天文(Nature Astronomy)期刊中。(编注:Chariklo是神话故事中半人马族的凯龙的妻子,或可按音译为凯芮珂龙。)


艺术家想像的女凯龙星(上)和妊神星(下)。图片取自维基百科

  女凯龙星是小型的岩质小行星,轨道位置介在土星和天王星之间,直径约250~300公里,绕太阳一圈长达63年。根据NASA的纪录,它是所谓的半人马族小行星(Centaurs)中最大的。而妊神星发现于2004年12月,是矮行星之一,位于海王星轨道以外的柯伊伯带(Kuiper Belt)中,所以也被归类为海王星外天体(trans-Neptunian object,TNO),绕太阳一圈约需285年,整体外型呈现扁球状,平均直径约1400~1600公里左右。女凯龙星和妊神星的光环都是近两年才发现的,天文学家们自这些发现之后,认为太阳系天体拥有光环很可能比先前认知的还要普遍。

  现行理论认为:基本上是绕行星公转的牧羊犬卫星的引力扭矩(gravitational torque)维持了行星环的形状,令光环不会因扩散而消失。然而,El Moutamid等人的最新研究却显示:妊神星和女凯龙星表面不规则的地形,例如山脉等,可能扮演类似「月亮」这样的引力作用角色,所以才能把光环拢在一起。除引力外,这些天体也可以借由快速自转制造特定的共振来维持光环不致扩散消失。

  El Moutamid表示:对女凯龙星而言,维持光环的主要的作用力来自地形起伏不平,妊神星则是扁平外型出了大力。这些不规则地形导致的不规则引力场,让光环可以恰好处在这些天体的洛希极限(Roche limit)边缘,所以才不会散开。所谓的洛希极限是小天体能最靠近某个大天体,却不被大天体潮汐力扯碎的轨道位置。

资料来源:Cornell University

发布单位:台北市立天文科学教育馆

  美国宇航局(NASA)的洞察号(InSight)在距离地球4.58亿公里的火星上于北京时间2018年11月27日凌晨3时52分登陆成功,登陆地点在埃律西昂平原(Elysium Planitia)的西侧,这是人类史上第八次成功登陆火星。

  着陆成功的信号透过与洞察号一同搭载其上的两个小型卫星「火星一号方块(MarCO)」传送出来,同时它们也是第一批被送入远处太空的方块卫星。

  洞察号以每小时约2万公里的速度进入火星大气层,经过了约7分钟,洞察号的程式设计成自主操作,并且天衣无缝的完成了所有步骤,如此一来才能够完美着陆。成功着陆并不是结束,之后的科学工作才是开始,首要任务是部署两个太阳能电板,虽然目前已经经由讯号确认操作完成,但是晚点将由火星奥德赛号对其进行验证。

1543312863208870.jpg

图说:洞察号第一幅传回来的图像

  洞察号本身设计成用来观察火星地质及地震学,在着陆后两天将开始相关的科学工作,利用1.8公尺的机械臂部署主要的科学仪器。

  洞察号将在火星停留一个火星年又四十个火星日,相当于地球的两年。喷气推进实验室表示,洞察号的成功登陆只是一小步,但这却是小型太空船的一大步,「火星一号方块」的成功证明了它的潜力,这项结果是对数百名天才工程师及科学家的赞颂。

资料来源:NASA Mars InSight

延伸阅读:
NASA InSight 洞察号登陆火星任务的时间表
随着洞察号一起前往火星的迷你太空船也试验成功!

发布单位:台北市立天文科学教育馆

  银河系中已知球状星团(GCs)的空间分布对于了解本银河系的性质扮演着极重要的角色,到目前为止的球状星团巡天观测在银河系盘面方向上还不是非常完整。

1538321418418426.jpg

  研究者Jinhyuk Ryu和Myung Gyoon Lee广域红外线巡天探测卫星(WISE, Wide-field Infrared Survey Explorer)的观测资料中,发现两个新的球状星团位于银河盘面附近。

1538321835239596.jpg

  Jinhyuk Ryu等人在近红外和中红外调查数据的新集群调查期间,偶然发现了这两个球状星团,即RLGC 1和RLGC 2。研究者从WISE宽带红外测量探测器W1波段(3.4微米)侦测的图像中发现一群恒星和其外部区域中存在微弱的漫射光。他们在确定两个球状星团的结构参数后。发现确定的值与已知球状星团的的值一致。最后他们使用其颜色星等关系图(CMD, Color-Magnitude Diagram)与金属含量丰度和星际物质的红化资料,经由拟合确定两个球状星团位于银河系盘面上的位置。对于拟合结果表明两个球状星团位于银河系的远半区域,可能位于银河系的光晕区域。

发布单位:台北市立天文科学教育馆

1536498345785060.jpg

图说:低纬度极光:史蒂夫,image credit:NASA

  在南北两半球的高纬度地区生活的人们,在天空中可以看到一个迷人的景象,极光,这些波状的彩色丝带吸引了不少观光人潮,而它还有在较低纬度地区才会看见的一个表亲,叫做史蒂夫(STEVE),全名叫做强热力发射速度增强现象(Strong Thermal Emission Velocity Enhancement)。但业余科学家在新的研究报告指出,这个色彩斑斓的紫白色丝带实际上跟极光的原理并无关系,而是一种全新的天体现象。

  最初,为了验证史蒂夫是否符合极光的定义,研究人员分析了2008年3月在加拿大东部观测到的极光。他们使用了一系列天空全像摄影机和一颗测量带电粒子的卫星数据,研究人员假设,如果史蒂夫与传统极光相似的话,在史蒂夫出现时,卫星数据应当会记录下带电粒子数量的增加。这是因为极光是由带电粒子撞击地球大气中的原子和分子所产生的,但是当史蒂夫在天空中出现时,带电粒子的数量只有少量的增长,研究团队于8月中旬在期刊地球物理研究通讯(Geophysical Research Letters, GRL)中发表,这个惊人的结果意味着史蒂夫是一个完全不同于极光的现象,由不同的机制所产生。

1536498742749434.jpg

图说:低纬度极光:史蒂夫(STEVE),image credit:Paul Zizka

  团队写道,目前他们还不确定史蒂夫的光源是如何产生的,但有一种可信的理论是,有可能是低能量质子正在加热上层大气,从而导致了发光现象,至于实际研究,业余团队认为应交由专家进行进一步的研究及分析。

资料来源:NASAScience

发布单位:台北市立天文科学教育馆

  天文学家利用哈勃太空望远镜(Hubble Space telescope)在紫外波段捕捉到一系列土星北极发生的极光影像,且是迄今哈勃拍过最棒的土星北极影像,可提供天文学家更全面的土星北极光研究线索。这组土星极光影像是于2017年以哈勃上的太空望远镜光谱相机(Space Telescope Imaging Spectrograph)拍摄的,前后跨越了7个月左右,这段时间恰好在土星北半球的夏至前后。

1536165446364229.jpg

  地球上的极光主要来自太阳发出的太阳风。太阳风中的带电粒子靠近地球附近时,与地球磁场交互作用。地球磁场是地球的天然防护罩,可避免地表环境被太阳风粒子直接袭击,并可困住少部分带电粒子。这些被困在地球磁圈(magnetosphere)中的带电粒子受到地球磁场影响而被激发,并沿着磁力线运动而抵达地球南北磁极(编注:磁南北极≠地理南北极)。在此,带电粒子与高层大气中的氧原子和氮原子交互作用,在可见光波段产生炫丽的极光。

  太阳系其他行星中的火星、木星、土星、天王星和海王星也都观测到有极光现象。其中后4颗类木行星的主要组成是气体和冰,比例最多的气体就是氢,因此它们的极光大多集中在紫外波段。因地球大气会吸收紫外光的关系,要研究天体紫外波段的性质,最好移师到地球大气层外进行。这就是太空望远镜的优势。

  土星是太阳系第二大行星,有许多特别有趣的性质。哈勃配合卡西尼号太空船(Cassini)每次飞越土星极区的机会一起观察,让天文学家可以多获得一点土星磁圈概况讯息。

  这组土星北极光影像显示局部特征变化多端的现象。这个变化主要是受到太阳风和土星自转速度极快的影响。地球自转一圈平均24小时,而土星仅需11小时左右,快到让土星变扁了。所以在此状态下,土星北极光最亮的部分集中在两个时段:清晨和午夜前。前者以前就已知道,后者却是首度报告,似乎是因为恰值土星夏至时期,土星磁圈和太阳风交互作用的特别结果。

  上方的影像,是由2018年初的可见光影像,与2017年紫外波段的土星北极光影像合成的。哈勃曾在2004年趁土星南半球夏至前后进行南极光研究,后于2009年恰逢土星环侧对地球而「消失」的特殊机会记录到土星南极光。这些都是天文学家解读土星极区和磁圈的宝贵讯息。

资料来源:ESA/Hubble Information Centre

发布单位:台北市立天文科学教育馆

  天文学家刚刚根据哈勃太空望远镜和其他太空和地面望远镜的观测资料,描绘出宇宙进化史上最完整的图像之一。特别是,哈勃的紫外线视野打开了一个不断变化的宇宙的新窗口,追踪过去110亿年间恒星诞生,即大爆炸后约30亿年宇宙最繁忙的恒星形成时期。这张照片的区域包含大约15,000个星系,其中大约12,000个正在形成恒星。这块区域的面积是2014年发布的哈勃紫外线超深场的14倍。

  由于地球的大气过滤大部分紫外线,哈勃可以提供一些紫外线的观测。该计划称为哈勃深紫外线(HDUV)调查。这块区域的面积是2014年发布的哈勃紫外线超深场的14倍。该图像是GOODS-North场区的一部分,位于大熊星座内。

天文学家刚刚根据哈勃太空望远镜和其他太空和地面望远镜的观测资料,描绘出宇宙进化史上最完整的图像之一。

资料来源:https://www.nasa.gov/feature/goddard/2018/hubble-paints-picture-of-the-evolving-universe

发布单位:台北市立天文科学教育馆

  球状星团是非常古老的恒星系统,里面拥有数十万至百万颗恒星,以引力聚集成球形。银河系已经发现近200颗球状星团,由于球状星团较明亮,科学家认为尚未发现的球状星团应该不多。不过,巴西的天文学家Denilso Camargo最近以NASA的宽视场红外巡天太空望远镜(WISE)公布的影像中,一口气发现了5个球状星团。 

  新发现的球状星团,分别命名为Camargo 1102,1103,1104,1105和1106,其年龄介于125至135亿年之间,几乎是银河系最早期的恒星。其中Camargo 1102位于银河系中心的另外一侧,距离太阳26700光年,距离中心则为2800光年。 其他星团则与太阳同侧,距离太阳约14,700-18,900光年,距银河系中心的距离则为6,800-11,700光年,由于位于银河盘面方向所以不容易发现。天文学家认为,这些新发现的球状星团有助于了解银河系形成和早期演化。

资料来源: sci-news

1532774834318961.jpg

发布单位:台北市立天文科学教育馆

  伊索寓言有个关于蝙蝠的故事,投机的蝙蝠在鸟兽大战之中,一下子说自己是老鼠类、一下子又说自己是鸟类。在天空中也有这中双重身分的天体,288P不但是小行星,却带有彗星的特性!

  这个天体是2006年11月,由「太空监视计划」(Spacewatch)所发现,当初把它分类为小行星,并被给临时编号小行星2006 VW139。不过在2011年11月的「泛星计划」(Pan-STARRS)观测中,看到2006 VW139存在彗星特征,因此以彗星的命名形式改编号为288P周期彗星。所以,288P是位于主小行星带的彗星,其轨道特征与小行星相同。这类天体目前已发现10颗左右,称为主带彗星(Main-belt comet)。

  在2016年9月马克斯·普朗克研究所的天文学家,在天体到达它的近日点时以哈勃望远镜观察,惊喜地发现288P不仅是单一的天体,而是两个几乎同质量的天体在距离100公里远处互绕轨道。这是主带彗星的首例!而天文学家可以由此测量物体的质量,因此非常重要。天文学家认为288P分裂成双天体可能仅5000年,由于小行星表面无法留住水冰,却可以保存在地函中,因此这是天体分裂后内部水冰昇华,而成彗星状态。

1506517171571688.jpg

编译:台北市立天文科学教育馆 JIM LEE
资料来源: 
http://sci.esa.int/hubble/59579-hubble-discovers-a-unique-type-of-object-in-the-solar-system-heic1715/
https://en.wikipedia.org/wiki/Main-belt_comet


主带彗星是在主要的小行星带内的天体,但在部分的轨道上会呈现出彗星的活动和特征。喷射推进实验室定义主带小行星是轨道半长轴大于2天文单位,但不超过3.2天文单位的小行星,而近日点(最接近太阳的距离)不小于1.6天文单位。“主带彗星”这个名词是基于轨道和它存在的位置扩展出来的分类,这并不意味着这些天体是彗星,或是环绕在核心周围的物质是如同彗星的挥发性物质。