发布单位:台北市立天文科学教育馆

  迄今已知距离最远、质量最大的垂死星系,估计含有超过1兆颗恒星。最近日本国立天文台(National Observatory of Japan)和哥本哈根大学波尔研究所(Niels Bohr Institute at University of Copenhagen)的天文学家田中贤幸等人,测量该星系中的恒星运动状况后,发现这个垂死星系的核心几乎已经完全成熟甚至开始步入死亡阶段,代表它应该是在大霹雳(Big Bang)后仅约15亿年就已形成,这比先前估计的还要早10亿年左右。这个结果显示:当这些星系巨兽们还处在「活着」并仍持续形成新恒星的阶段时,与宇宙中大部分星系相较之下可能也不是那么极端。这项发现不仅增进了我们对宇宙形成的知识,同时还让天文学家检讨现行当作基础应用的相关理论模型是否需要修正的问题。

图像中央圈起的红色天体就是大约处在120亿年前宇宙早期的垂死星系。Credit: NAOJ/M. Tanaka
图像中央圈起的红色天体就是大约处在120亿年前宇宙早期的垂死星系。Credit: NAOJ/M. Tanaka

  如果星系不再形成新恒星,天文学家便视之为死星系(dead galaxies);反之,若星系因恒星形成仍在进行而显得明亮,便算是活星系(alive galaxies)。例如我们的银河系是个活星系,仍在缓慢但坚定的形成新恒星;而室女座星系团中间的庞大椭圆星系M87就是个完全死寂的死星系。至于淬熄星系(quenching galaxies)指那些正迈向死亡的垂死星系,星系中的恒星形成活动已明显受到抑制,不若全然的活星系那般明亮,但也不若全然的死星系那般幽暗。研究学者观测星系时会先根据亮度光谱来确认并筛选研究目标。

  了解星系为何死亡是这些天文学家想要探索的主题。但为何星系中的恒星形成过程会被抑制而死亡?受限于目前的仪器设备,无法取得更详细的星系细节数据,故而迄今没有明确答案。这些天文学家们期待未来新一代的地面及太空望远镜正式运作,辅以更优秀的电脑模型,能够获得最终解答。(编译/台北天文馆张桂兰)

资料来源:Niels Bohr Institute (NBI)

发布单位:台北市立天文科学教育馆

TESS拍到的右枢照片。
TESS拍到的右枢照片。Credit: NASA/MIT/TESS

  NASA的TESS“苔丝”任务是以寻找系外行星为主要目标的计划,其原理是监测恒星细微的亮度变化来探知行星存在与否。但在最近于檀香山举行的美国天文学会会议上,天文学家宣布TESS发现了著名的右枢竟然是一对食双星。

  右枢是天龙座α星,亮度约3.7等,虽然并不是什么特别亮的星星,但在6000至4000多年前他曾是最靠近天球北极点的星星,也就是当时的「北极星」所在。埃及金字塔中的墓室也留下了当时的星图,证实了这一段过去。从地球上观察,当双星系统中的两颗恒星彼此相互遮掩时,它们的整体亮度会周期性的逐渐下降并再次增加,这对双星便称为食双星。根据观测,右枢每51.4天会发生两次「食」的现象。

  过去的天文学家早已知道右枢是一对双星,但直到今日才发现它是食双星。除了因为这对双星的互绕周期较长外,最主要的原因是主要食只会使整体亮度下降0.1等,次食亮度变化更小只有0.02等。之所以亮度变化不明显,原因是在于恒星彼此互绕的轨道盘面并没有完全与地球的观察视线平行,造成遮蔽的效果不大。

  前一代的开普勒任务也未能捕捉到这颗恒星的亮度变化,这是因为右枢对于感光元件太亮了,反而使侦测器数值饱和,看不出差异。不过右枢的亮度恰好在TESS的侦测范围内,同时右枢又刚好位在多个巡天范围的重叠区域内。透过长时间的观察和非常精确的测量,才终于让TESS能够发现右枢的细微亮度变化。(台北天文馆王彦翔/编译)

资料来源:Sky & Telescope

发布单位:台北市立天文科学教育馆

  1990年代NASA的四大轨道天文台计划(Great Observatories),包含最知名的「哈勃太空望远镜」以及「康普顿伽玛射线天文台」、「钱德拉X射线天文台」,「史匹哲太空望远镜」则是最晚发射升空的一台,也是唯一不是由航天飞机(太空梭)发射的一台。四台太空望远镜各司其职,以不同波段的电磁波观测,史匹哲太空望远镜负责的便是地表上无法观测到的红外波段。

  由于红外光很容易受到仪器的热噪音干扰,所以观察红外光的望远镜多需要主动制冷设备或是被动的散热机制。史匹哲太空望远镜于2003年发射升空,原定运行2.5至5年,2009年5月耗尽了液态氦之后,使得易受温度影响的远红外光观测失效,不过史匹哲上搭载的三项仪器中的「红外阵列照相机(IRAC)」,还是能做到对近红外光达到相同灵敏度的观测。失去主动制冷机制后,史匹哲的温度从5K上升至大约30K(-243°C),开启了它运行至今的「史匹哲“暖”任务」,继续对天文学的研究产生贡献。

1579607658671282.jpg

  图说:史匹哲太空望远镜运行在落后地球的日心轨道上,镜筒上不同颜色的涂层是望远镜的被动散热机制。亮面涂层可以将受光面的反射最大化,背光处的黑色涂料则能帮助辐射多余的废热。

  史匹哲太空望远镜16年来在轨道上逐渐远离地球,为了与地球通讯使得其姿态无可避免地接收到越来越多的太阳辐射,不断影响它的观测能力。事实上早在2016年NASA便考虑将其退役,由功能更强大的詹姆斯韦伯太空望远镜接替,但这项太空史上最复杂的望远镜不断延期,史匹哲也一再延役。NASA考量史匹哲的观测能力已经不符每年1400万美元的营运成本,决定在2020年1月30日关机,让史匹哲优雅地划下句点。

  综观史匹哲太空望远镜16年来的贡献,它拍摄了许多大红移的深远天体、发现目前已知最遥远的星系GN-z11、第一张系外行星的直接成像,最知名的还是在2016年参与TRAPPIST-1多行星系统的观测,提供了主要的数据贡献。史匹哲太空望远镜的口径只有85公分,想像一下口径达6.5公尺的詹姆斯韦伯太空望远镜发射升空后,能突破多大的极限呢?

资料来源:Space.com

发布单位:台北市立天文科学教育馆

  美国海军研究实验室(Naval Research Lab)卡尔·巴特姆斯(Karl Battams)提出报告:2020年1月13日的太阳与太阳圈观测卫星(Solar and Heliospheric Observatory,SOHO)上的日冕仪(coronagraph)影像中新发现一颗彗星,这是SOHO进入2020新一轮十年发现的第1颗新彗星。只不过,发现仅数小时后,它就冲向太阳,快速地被太阳热力蒸发殆尽,消失在宇宙间。下方是世界时2020年1月13日0时至9时的SOHO LASCO C3日冕仪影像,右上角红色的是一般所见的太阳影像大小,深蓝色部分为日冕仪遮蔽太阳强烈光辉以便能显现周围黯淡现象用的遮罩,中间偏下的亮点是水星,由左至右横向移动的光点是遥远的背景恒星,而用2短线标示的移动天体就是新发现的彗星,其他不连续的散乱亮点或亮线是杂讯。

最新发现的SOHO掠日彗星冲入太阳自杀的影像,小箭头所指即该彗星。Credit: NASA/ESA/SOHO
最新发现的SOHO掠日彗星冲入太阳自杀的影像,小箭头所指即该彗星。Credit: NASA/ESA/SOHO

  SOHO是非常有效率的彗星猎人,1995年12月发射升空至今已发现接近3900颗新彗星,多半是轨道近距离飞掠太阳的掠日彗星(sungrazer comet)。专业和业余天文学家利用SOHO图像发现新彗星的速度通常很快,所以像这次开年后13天才被发现的状况很罕见。不过,在新技术支持下,天文学家相信SOHO发现新彗星的数量于今年应会轻松突破4000颗。

  这颗自杀彗星应属于克鲁兹族掠日彗星(Kreutz sungrazer)成员之一,这个家族成员据信是公元1106年一颗大彗星分裂后的碎片,1965年的著名彗星池谷·关(C/1965 S1,Comet Ikeya–Seki)也是其中之一。这个彗星家族名称来自以研究这类彗星成名的19世纪德国天文学家Heinrich Kreutz。每年都有数以百计的克鲁兹族彗星飞掠太阳后瓦解消失;事实上,这个新一轮十年的第2颗新彗星很可能也是一个克鲁兹族掠日彗星。有兴趣者可关注后续消息。

  由于面对强烈太阳光辉影响,一般望远镜要在太阳附近的天区发现新彗星并不容易。但以掩码将太阳光辉屏蔽后的日冕仪图像就可以呈现许多一般望远镜无法观察到的天体。对发现新彗星有热情的业余天文学家会协助监看日冕仪图像,一旦在图像发现有彗星动态便提出报告,以便国际小行星中心等单位确认是否为新彗星。例如这个新发现就已成历史的SOHO彗星就是由泰国的Worachate Boonplod首先注意到,他曾发现的SOHO彗星数量非常多,是最有成就的SOHO彗星猎人之一。只不过约定成俗,从SOHO图像发现的新彗星一律以SOHO为名,不像其他新彗星是以发现者的姓氏为名。对发现新掠日彗星有兴趣者,不妨到The Sungrazer Project网站参考相关操作程序,或直接查看近期的SOHO LASCO日冕仪即时影像。(编译/台北天文馆张桂兰)

资料来源:Spaceweather.com

发布单位:青岛艾山天文台

  圆形的日晷用于确定时间、长形的圭表用于测定二十四节气、方形的司南用以标明方向和二十八星宿体系、柱形的影柱用于观看夏至和冬至最短和最长的影子……2020年1月12日,位于青岛市崂山区的鲁信长春花园西南角的社区天文广场内外两部分的施工人员正式撤离,这标志着由青岛艾山天文台设计并承建的国内首个设立在社区内的实用性天文广场正式完工,广场的建立使得崂山区的社区科学普及走出了一条全新的道路,这将对普及我国经典传统文化、普及科学知识起到示范和引领作用。

日晷

日晷

日晷
日晷

圭表

圭表
圭表

司南
司南

日影柱
日影柱

观天测时

室内部分展品

火箭和人造卫星模型
室内部分区域

发布单位:台北市立天文科学教育馆

  由西南研究院(Southwest Research Institute)领导的NASA露西任务团队透过哈勃太空望远镜,发现3548号小行星Eurybates拥有卫星。Eurybates是一颗与木星共享轨道的特洛伊小行星,同时也是露西任务预定探测的目标之一。

  特洛伊小行星是指在行星轨道前后60度的L4、L5拉格朗日点上的小行星,公转周期与该行星相近,目前除了木星拥有已知数量庞大的特洛伊小行星之外,海王星、火星与地球都被发现拥有特洛伊小行星。科学家认为Eurybates是数十亿年前发生的一次巨大碰撞的残留物,通常这类小行星碰撞也会产生卫星。新发现的这颗卫星亮度是Eurybates的1/6000倍,这意味着其尺寸小于1公里。如果推估正确,这颗卫星将成为有史以来探测器探测的最小物体之一。

  露西(Lucy)任务预计将在2021年10月发射,其目标是一次飞越5个木星特洛伊小行星进行探测,途中还会飞越一颗主小行星带的52246号小行星,再加上这次的卫星将使探测目标增加至7颗,创下人类太空探测史上单次任务探测最多天体的新纪录。露西团队预计将在今年收集更多数据,好好地了解这个天体的轨道。(台北天文馆王彦翔/编译)

艺术家描绘了对露西航天器在特洛伊小行星的12年飞行任务中飞越的景象。哈勃太空望远镜最近的观测显示,露西将访问的七个小行星之一-Eurybates-拥有一颗卫星。图片:西南研究所
艺术家描绘了对露西航天器在特洛伊小行星的12年飞行任务中飞越的景象。哈勃太空望远镜最近的观测显示,露西将访问的七个小行星之一-Eurybates-拥有一颗卫星。图片:西南研究所

资料来源:Astronomy Now

发布单位:台北市立天文科学教育馆

  在目前已知的数十万颗小行星当中,只有21颗的轨道是完全在地球的公转轨道内,现在又多了一颗——2020 AV2,而且它是目前发现第一颗轨道完全在金星公转轨道内的小行星,意大利天体物理学家Gianluca Masi利用他负责的“Virtual Telescope Project”拍下了这颗难以捕捉的小行星。

小行星2020 AV2(白色箭头处)
小行星2020 AV2(白色箭头处)

  如果平常有在关注夜空中行星的位置,很容易发现地球内侧的行星(水星、金星)观测机会比外侧的行星(火星、木星等)还要少,这是因为内行星无法拉开与太阳的视距离,只能利用黄昏或清晨躲避阳光在地平线附近观察,地球内侧的小行星也是如此,而小行星的结构更小,反照率低,又增加了观测的难度。

  不过还有别种方式可以「看见」小行星,当小行星刚好通过背景恒星前方时,恒星会暂时消失,这种现象称作小行星掩星。2020年1月4日,国际天文联会小行星中心(MPC)利用掩星数据中的数据,发现目标ZTF09k5,指出它的轨道可能完全在金星公转轨道内。Gianluca Masi利用这项信息,接连几天在地平线附近寻找,在低处云层的遮掩及满月的干扰下,仍然成功捕捉到了ZTF09k5的轨道运动。国际天文联会整理了各地的观测数据,包括Gianluca Masi回传的数据,将这颗小行星命名为2020 AV2

小行星2020 AV2的轨道
小行星2020 AV2的轨道

  现在2020 AV2是我们已知轨道半径最小的小行星,也是轨道周期最短的小行星,将来能不能再发现离太阳更近的小行星,会是天文学家观测技术的挑战。(台北天文馆虞景翔/编译)

资料来源:https://minorplanetcenter.net/mpec/K20/K20A99.html


2020 AV2发现时的天体坐标21h 24m 49.90s 和 −06° 08′ 41.8″。

轨道特性
2020年1月7日(儒略日2458855.5)
不确定参数 9
观测弧:5天
远日点:0.654±0.002 AU
近日点:0.456±0.003 AU
半长轴:0.555±0.002 AU
轨道离心率:0.17755±0.00359
轨道周期:0.41年(150天)
平近点角:237.235±0.336°
平均运动:2°22m 55.762s/天
轨道倾角:15.893±0.095°
升交点经度:6.699±0.038°
地球最小轨道相交距离:0.34598 AU

基本小行星物理特征
平均直径:>1 km ~ 2 km(估计为0.14)
视星等:18.0
绝对星等(H) :16.260±0.767
16.5

发布单位:台北市立天文科学教育馆

  参宿四的亮度正在变暗,根据天文学家的观测,它可能在任何时候发生超新星爆炸,可能是明天、也可能是十年、甚至一万年,但日前在檀香山举办的第235届美国天文学会的年会上,路易斯安那州立大学天文物理学系荣誉教授Bradley E.Schaefer发表了一项更有力的预测,恒星「天箭座V」将在60年内发生新星(请注意并非超新星爆炸)爆炸,且在它最亮的时候可能与金星(约-4等)相同,为时一个月左右。

艺术家绘制的天箭座V的想像图,左为吸积中的白矮星。
艺术家绘制的天箭座V的想像图,左为吸积中的白矮星。

  1902年,天文学家发现天箭座V,并于1963年确认它是一类被称为激变变星的系统,拥有一颗白矮星及伴星,其中天箭座V是最极端的一颗,一般而言激变变星的伴星质量比白矮星的质量还要低,但这个系统的伴星质量竟是白矮星的四倍,这使得它成为唯一已知伴星质量大于白矮星的激变变星,这一类型的恒星,两颗星距离太近,致使白矮星的引力影响了它的伴星,而伴星的外围气体便会被逐渐吸进白矮星,而这又造成了正回馈效应,使得白矮星质量更大,引力更强,并吸收更多的伴星物质,这些物质落入白矮星时,会将重力位能转化成恒星风的能量,整个系统的光度会提高到接近超新星的程度。



上图为天箭座V的相对位置,(Vega是织女星,Deneb是天津四,Altair是牛郎星,V Sge即为目标),下图则为新星爆炸时所能见到最大亮度的对比。

  从美国变星观测者协会(AAVSO)的数据显示,天箭座V的亮度增加了将近10倍,即2.5个星等。而近年(十年内)的亮度增长更是30年前的两倍,这种结果将使亮度呈指数级成长,根据模拟计算,「新星」将会发生在2083年,然而日期也有不确定性,大约是±16年。这比目前已知最亮新星(约-0.5等)还要亮,而上一次的客星,即为1604年的开普勒超新星(约-2.5等),也不会比它亮,届时全世界的人将可在天箭座附近看见一颗超亮恒星,在夜空持续将近1个月。(编译/台北天文馆许晋翊)

V Sge近100年的光度变化
V Sge近100年的光度变化

资料来源:路易斯安那州立大学

发布单位:台北市立天文科学教育馆

  2020年开年大红!美国宇航局(NASA)凌日行星搜寻卫星“苔丝”(Transiting Exoplanet Survey Satellite,TESS)宣布两项重要发现:发现它的第一颗位于恒星宜居带(habitable zone)内的地球级系外行星,以及它的第一颗绕着两颗恒星公转的环双星系外行星。

TOI 700 d:TESS的第一颗地球级适居行星

  TEES的第一颗位于恒星适居区的地球级系外行星编号为TOI 700 d,意味着如果该行星上有水的话,能以液态水的型态存在于行星表面。TESS发现该行星之后,天文学家另用史匹哲太空望远镜(Spitzer Space Telescope)和计算机仿真方式确认该行星的潜在环境,以便能协助订定未来的观测方向。此外,TOI 700 d也是少数已知的地球级系外行星,不过其他的除TRAPPIST-1外,皆由开普勒太空望远镜(Kepler Space Telescope)发现。


TOI 700行星系统示意图。Credit: NASA

  TOI 700是一颗M型红矮星,距离约100光年,位于南天的剑鱼座(Dorado)方向,质量和半径都仅约太阳的0.4倍,表面温度则仅约太阳的一半,TESS于这颗恒星旁发现3颗凌日行星。由于先前对TOI 700恒星大小估计错认为与太阳差不多,导致估计出的TOI 700 d比真实大小还大且热;后来这个错误修正后,更新了TOI 700 d的参数,方才发现TOI 700 d落在该恒星的适居区中,且大小与地球相仿。且在长达11个月的TESS观测数据中,TOI 700都没有闪焰爆发的现象,显示TOI 700d环境相当单纯、稳定而适宜居住,让天文学家能更容易地模拟出它的大气和表面状况。

  该系统中的最内侧行星TOI 700 b大小几乎与地球相同,很可能也是岩质行星,绕其母星公转一周约仅10天。而中间的TOI 700 c比地球大了约2.6倍,大约介在地球和海王星之间,公转周期约16天,可能是一颗气态行星。最外侧的TOI 700 d是bcd这3颗行星中唯一落在适居区中的,直径约比地球大20%,公转周期约37天,应该也是一颗岩质行星,收到其母星的辐射量约为地球收到太阳辐射量的86%。

  天文学家认为这3颗行星都被其母恒星潮汐锁定,意味着其自转周期和公转周期一样长,会始终以同一面面对其母恒星,所以即使TOI 700 d是地球级适居行星,它大气中的云系形成和风的型态都与地球截然不同。其中一项计算机仿真认为TOI 700 d如果有海洋的话,应该与火星早期状况类似,拥有浓厚且主要为二氧化碳的大气;另一项计算机仿真结果则认为TOI 700 d应该类似完全没有云、完全显露地表状况的地球,风则从背对恒星的夜晚面吹向面对恒星的白昼面。这些猜测,未来如能精细观测到这颗大气的光谱,就可以确定它的真实状况。

TOI 1338 b:TESS的第一颗环双星系外行星

  一位参与NASA哥达德太空中心(Goddard Space Flight Center)暑期实习计划的高三学生Wolf Cukier在检验一批TESS的食双星数据时,突然发现其中一个系统TOI 1338发生「食」的时间不对,后来经天文学家Veselin Kostov等人确认其实是一颗行星绕着这对双星造成的。这是TESS观测中,第一个发现同时绕着两颗恒星公转的系外行星,即所谓的环双星系外行星(circumbinary planet),编号为TOI 1338 b。


TESS发现的第一颗环双星系外行星示意图。Credit: NASA

  TOI 1338系统距离约1300光年,位于南天的绘架座(Pictor)方向。两颗恒星约每15天互绕一周,其中主星的质量比太阳大10%,另一颗伴星则比较冷、比较暗,质量只有太阳1/3而已。这个系统内目前仅发现TOI 1338 b一颗行星,质量约地球的6.9倍,约介在海王星和土星之间,它绕双星公转的轨道平面就在双星互转轨道平面上,所以从地球的方向看过去,这两颗恒星会因互相遮蔽而发生互食(eclipse)现象的同时,当TOI 1338 b经过两星前方时,也各会发生凌日(transit)现象。食和凌都会造成总亮度减低。

  不过,两恒星互食的周期和亮度降低程度都很规律而容易观测,但由于两颗恒星和行星都在动,TOI 1338 b凌日就没有那么规律,介在93~95天之间,且亮度降低的程度和持续时间也都不尽相同,比较难观测。不过因为双星中的伴星太暗,目前TESS观测到的TOI 1338 b凌日都发生在主星。根据以往观测数据所进行的计算机仿真结果,TOI 1338 b的轨道至少在未来1000万年内都相当稳定。

  开普勒任务和其K2任务之前已经在10个系外行星系统中发现12颗环双星系外行星,状况全都与TOI 1338 b类似。一般双星观测比较偏向于发现大型行星,小型行星凌日时对恒星亮度的影响力则不大,但TESS在任务头两年观测了数十万组食双星系统,以量取胜,因此未来必定还有许多环双星行星等待被发现。

资料来源:
1.https://www.nasa.gov/feature/goddard/2020/nasa-planet-hunter-finds-its-1st-earth-size-habitable-zone-world
2.https://www.nasa.gov/feature/goddard/2020/nasa-s-tess-mission-uncovers-its-1st-world-with-two-stars

发布单位:台北市立天文科学教育馆

  中国的嫦娥四号登陆探测器与玉兔二号漫游车在1月2日再度进入夜晚休眠状态,顺利完成13个月球日(相当于13个地球月)的探测任务,且机械状况仍十分良好,远远超乎科学家的预期。

  玉兔二号自从2019年1月3日登陆Von Kármán陨石坑以来,总行驶距离已达357.695米。虽然行驶距离尚未超越前苏联的月球步行者的纪录,但其寿命早已刷新了漫游车的纪录,甚至远远超过了当初预估只探测3个月球日的设计寿命。受限于太阳照射的时间以及避免正午阳光直射的伤害,玉兔二号的活动时间只有日出后24小时到日落前24小时的这段期间,途中受太阳直射的6个地球日还得休息、以免「中暑」。

玉兔二号的行走路径图

玉兔二号的行走路径图

  根据目前发表的初步探测结果,Von Kármán陨石坑表面某些物质似乎是来自月球的地函;透地雷达的结果则显示其表面的岩屑比之前认为的还厚,可能是因为频繁遭受撞击所致。嫦娥四号与玉兔二号下一次「苏醒」的时间预计在1月19日,继续进行第14个月球日的探测活动,期待2020年会有更多新发现!(台北天文馆王彦翔/编译)

资料来源:Sky & Telescope

发布单位:台北市立天文科学教育馆

金星可能也有活火山。Image: © ESA/AOES

金星可能也有活火山。Image: © ESA/AOES

  目前已知除地球外,唯一拥有喷发熔岩的活火山是木卫一。但仍然有迹象表明金星可能也有活火山,例如其大气有微量的硫气体。此外大约十年前,科学家分析金星特快车(Venus Express)太空船的地形数据,也认为金星上的某些熔岩流年龄小于250万年,甚至可能小于25万年。此外在2010年,研究人员发现金星上多个地点的可见光到近红外光波段异常亮。由于金星地表长期暴露在高温大气中,在风化作用下较老的地表区域较暗,因此这些较亮的区域暗示是最近才发生的熔岩流。但熔岩流的年龄仍然不确定,因为在金星极端大气下火山岩变化速度有多快,以及这种变化如何影响亮度还不清楚。

  为了研究金星是否有近期的熔岩流,科学家们对橄榄石(一种常见于火山岩中的绿色矿物)的晶体进行实验,看在与金星表面相似的条件下如何变化。研究人员在摄氏900度的熔炉中加热橄榄石长达一个月,他们发现大部分的橄榄石在几天之内就被红黑色赤铁矿所复盖,使得很难检测到橄榄石。但是2006年至2014年围绕金星观测的金星特快车却检测到橄榄石的迹像,表明这些橄榄石近期才产生,否则与金星大气的化学反应会掩盖它。研究人员也研究与烘烤其他火山矿物,结果这些矿物的生成物与金星的大气非常相似,因此认为金星可能仍藏有活火山,该研究刊登于2020年1月3日Science Advances期刊。(编译/台北天文馆李瑾)

资料来源:space.com