发布单位:香港天文学会

1615744069791365.jpg

  俄罗斯科学家周六发射了世界上最大的水底太空望远镜之一,从贝加尔湖(Lake Baikal)原始水域深入宇宙。

  自2015年以来一直在建造的深海水底望远镜目标在观察中微子,这是目前已知的最小粒子。望远镜称为贝加尔湖-GVD,淹没在距离湖岸约四公里的750米至1,300米的深度。

  由于中微子很难发现,而水是一种有效的媒介,所以浮动水底天文台由钢缆将球形玻璃连接到它上面的不锈钢模组。科学家将模块小心地通过冰上的一个矩形孔降到冰冻的水中。

  联合核研究所的德米特里·纳乌莫夫(Dmitry Naumov)站在湖的冰冻表面上说:「我们的脚下正好有一个半立方公里的中微子望远镜,未来几年望远镜将会扩展到一立方公里。」

  贝加尔湖望远镜将与美国在南极冰盖下的一个巨大冰立方(Ice Cube)中微子观测站相抗衡。这架望远镜是北半球最大的中微子探测器,而贝加尔湖(世界上最大的淡水湖)非常适合用来容纳这个漂浮的天文台。

  贝加尔湖它的深度而成为唯一可以部署中微子望远镜的湖,而它是个淡水湖是很重要,因为水的透明度非常重要。而且有两个半月的冰覆盖期这一事实也是重要的因素。

  望远镜是捷克、德国、波兰、俄罗斯和斯洛伐克的科学家合作的结果。

【图、文:节译自物理学机构网页】

发布单位:香港天文学会

  由中国科学院国家天文台、西藏自然科学博物馆、中国科学院长春光学精密机械与物理研究所、中国科学院紫金山天文台等机构联合申报高海拔地区科研及科普双重功能一米级光学天文望远镜建设项目日前正式启动,这意味着世界上口径最大的折射式光学望远镜将会在拉萨建立。

  一米光学天文望远镜建成后,凭借西藏海拔高、观测条件好的特点,可以进行变星、双星等天体的较差测光,近地小行星及太空目标监测等多项科研观测工作。同时,一米级光学天文望远镜作为西藏天文馆的配套设备,具备覆盖白天和夜晚的目视观测、天文摄影、直播和远程教学能力。望远镜系统配套有太阳望远镜科普观测系统一套、直播系统一套、米级望远镜和太阳望远镜的远程演示教学系统一套。

  下一步西藏还将建设一个天文馆,一米级光学望远镜将会安装在天文馆上面,进一步完善西藏科普资源。西藏天文馆有望于今年内开工,建成后将成为世界上海拔最高的天文馆。

【节录自中国西藏新闻网;新闻讯息由林景明提供】

发布单位:台北市立天文科学教育馆

  当恒星结束主序星阶段,将不再产生能量,随之迈入死亡。死亡的恒星根据残留的质量决定其命运,依照质量高低可能形成黑洞、中子星或白矮星。

  黑洞与中子星有其理论形成的分界,但因为此时物质处于极端高能的状态,中子星的质量上限一直是科学家讨论的议题。一般认为,对于不旋转的中子星,它的质量上限约为太阳质量的2到3倍,但准确值取决于中子星内部物质的未知型态。

  再好的理论都需要观测来佐证。近年科学家尝试用重力波观测来研究中子星的质量上限,特别是这两个事件:

  GW170817:两个质量在1.1到1.6倍太阳质量范围内的中子星,合并形成一个更大的天体,并认为合并后不久该天体马上坍塌形成黑洞。这个事件的重力波和电磁辐射观测表明,中子星的质量上限小于2.3倍太阳质量。

  GW190814:一个超过20倍太阳质量的黑洞与一个2.5到2.7倍太阳质量的天体合并。科学家不知道较小的天体是黑洞还是中子星。如果它是不旋转的中子星,意味着中子星质量的上限高于2.5倍太阳质量。

  因此德国物理学家Antonios Nathanail领导的团队,在最近分析了这些合并事件对中子星质量极限描述的差异。

  Nathanail及其合作者使用“基因演算法”进行分析,来确定哪些质量极限的模型与GW170817和GW190814的重力波和电磁辐射观测、数值模拟的合并事件相一致。

  研究发现,如果中子星质量极限定在2.5倍太阳质量,则与GW170817的观测结果或数值模拟的事件不符。但如果质量极限定在2.2倍太阳质量,则能匹配GW170817的观测结果与数值模拟的事件。

1615657495400711.jpg
基因演算法(蓝)与GW170817(紫)的机率密度函数。在质量上限定为2.2倍太阳质量时与观测结果有可信的匹配。

  也就是说,根据研究人员的分析,GW190814很可能就是两个质量不同的黑洞合并,也再次定调中子星(无自转)的质量上限约为2.2倍太阳质量。(编译/台北天文馆虞景翔)

资料来源:AAS NOVA

发布单位:台北市立天文科学教育馆 观赏方式:需以口径10公分(4吋)以上的天文望远镜观赏 可拍照 ★★★

  2021年3月21日将有一颗超大的“潜在危险小行星(PHA)”2001 FO32掠过地球,它的移动速度如此之快,以至于观察者若使用望远镜,在数十分钟之间可看到它在移动。2001 FO32直径估计是0.77到1.71公里间,在目前所知的PHA大小排行前3%。

  2001 FO32是2001年3月23日由新墨西哥州的林肯近地小行星研究中心(LINEAR)所发现,属于阿波罗型小行星,其公转周期810天,由于轨道是高椭圆形,近日点为0.30 AU,远日点则高达3.11 AU。2001 FO32最接近地球时距离2,016,351公里,约5倍地月距离。最亮时估计11.7星等,以20公分以上望远镜有机会用CCD拍摄,且在十多分钟时间内可见它在移动,这也是最有趣的地方。此外,事先用Stellarium软体预报位置,将有助于规划观测时间。详细位置与亮度资料请查阅此处。(编辑/台北天文馆助理研究员李瑾)

2001 FO32

发布单位:台北市立天文科学教育馆 观赏方式:肉眼观赏 双筒望远镜辅助观赏 可拍照 ★★

  春分是二十四节气之一,此时太阳位在黄道与天球赤道的升交点上,也就是赤经0时、以及黄经0度之处。一般来说,春分发生在3月20~21日之间,今年春分为3月20日17时35分。这天阳光直射地球赤道,昼夜等长,太阳也在正东方升起,正西方落下。

  春分不只是节气的变化,在此前后数十天到光害较少的地方,于日落后1~2小时内有机会在西方天空看到黄道光。黄道光为积聚在黄道面附近的微尘粒子反射阳光所造成的景象,看起来是沿着黄道泛出略呈三角形的白色微光,最亮的区域几乎与银河一样亮,只是因接近地平线,容易受到大气消光效应及光害等影响。因为春分前后黄道较为垂直于地面,较适合观赏。(编写/台北天文馆助理研究员李瑾)

萧翔耀先生摄于中央大学鹿林天文台

发布单位:台北市立天文科学教育馆 观赏方式:双筒望远镜辅助观赏 需以口径10公分(4吋)以上的天文望远镜观赏 可拍照 ★

  C/2020 R4 (ATLAS)彗星预计将于2021年3月12日达到最大亮度,视星等约6.5,届时它与太阳的距离为1.05 AU,与地球的距离为1.47 AU。

  C/2020 R4将在3月12日清晨03:19从东南方地平线附近升起,比太阳早2小时49分钟出现。在曙光05:13到来之前,达到仰角24度的高度,随后消失在黎明的天色之中。

  由于彗星的亮度是弥散在整个彗发中,C/2020 R4最适合的观察时间落在3月12日清晨5点前后数分钟,需搭配双筒望远镜或天文望远镜巡视东南方低空得以观看。详细的C/2020 R4位置可参考此处星历

Michael Mattiazzo所摄之C/2020 R4 (ATLAS)彗星。
Michael Mattiazzo所摄之C/2020 R4 (ATLAS)彗星。

发布单位:台北市立天文科学教育馆 观赏方式:肉眼观赏 双筒望远镜辅助观赏 需以口径10公分(4吋)以上的天文望远镜观赏 可拍照 ★

  χ Cyg预计将在3月9日左右达到最大亮度,背景星空为天鹅座,于日出前在东方低空可见,最佳观测时间约为04:30左右(相对位置请见示意图),虽然他的亮度比肉眼观星极限高一些,但建议还是使用天文望远镜或双筒望远镜来观赏。

  它是一颗米拉型变星,又称为蒭藁(ㄔㄨˊ ㄍㄠˇ,chú gǎo)变星,得名于经典米拉变星,蒭藁增二,其亮度变化周期非常长,动辄超过100天。此类型的变星亮度变化很大,以χ Cyg为例,有纪录以来最亮为3.3等、最暗则只有14.2等,最亮时可以用肉眼见到,最暗时则需要使用30公分以上的望远镜才看得见,χ Cyg的光变周期为404.5天。

  该星发现于十七世纪,虽然亮度变化的周期大致上相同,但是最亮的亮度却不完全相同,例如:2006年观测其极亮时的数值为3.8等,2015年的极亮数值却只有6.5等,差异甚大,目前对于此状况的原因尚不明朗。

  米拉型变星已经属于恒星演化晚期的红巨星,即将喷出外层气体形成行星状星云,由于这类变星的周期稳定且亮度变化大,故米拉变星是有志于观测变星的业余天文学家最普遍的目标。(编辑/台北天文馆研究组技佐许晋翊)

χ Cyg与其它亮星的相对位置示意图,点击图片可放大。
χ Cyg与其它亮星的相对位置。以上示意图由Stellarium软体产生。

* 不要跟天鹅座X(X Cygni,造父变星)混淆了,是天鹅座χ(Chi Cygni,米拉变星)。

发布单位:台北市立天文科学教育馆

1615038514487075.jpg
左图是根据Chandra的观测资料,对SN1987A超新星碎片撞击周围环状物质的3D模拟。右图是艺术家绘制的波霎风星云。波霎是高速旋转并具有强磁场的中子星,其吹出的粒子和强磁场作用形成波霎风星云。

  自1987年2月24日大麦哲伦星系里的SN1987A超新星爆炸后,作为四百年来首次肉眼可见的超新星,科学家对其很感兴趣,使它成为拥有最多研究的天体之一,其中包括寻找爆炸后留下的中子星。

  当质量大的恒星燃烧完核心的氢后,核心将塌缩反弹并把外层吹往太空。塌缩的核心将变成拥有极高密度的中子星,中子星是由中子緻密堆积所形成(约原子核的密度),假如把太阳压成一颗中子星大约仅16公里。

  波霎(脉冲星)是高速自转并带有强磁场的中子星,具有光束并随中子星自转如灯塔般扫过天空,假如朝向地球时可观测到短的脉冲。有些波霎表面会吹出物质(带电粒子),其速度甚至趋近于光速,当带电粒子和磁场作用将形成结构复杂的波霎风星云

  使用钱卓拉(Chandra)X射线天文台和核光谱望远镜阵列(NuSTAR),团队发现因SN1987A的碎片撞击周围物质而产生的相对低能量的X射线。此外因NuSTAR可侦测到更多相对高能量的X射线,借此团队亦发现高能量粒子存在SN1987A的证据。

  此相对高能量的X射线来源有两个可能,其一是高能量的波霎风星云,另一是爆炸波把粒子加速到高能量,后者不一定需要波霎存在,且可在离爆炸中心较远处出现。

  但此相对高能量的X射线资料,无法完全用爆炸波来解释,因而提高波霎风星云(中子星)存在的可能性。由于在2012到2014年间,科学家观测此X射线亮度皆差不多,但是于澳洲望远镜緻密阵列(ATCA)观测到的电波讯号强度却增强,这和爆炸波机制预期的结果不吻合。估计依靠爆炸波把电子加速到如NuSTAR观测的高能量,需要花上400年,较超新星残骸的年纪大上10倍。

  搭配Chandra和NuSTAR的观测与2020年ALMA的在毫米波段观测结果,亦可为波霎星云存在提供证据。

  因在SN1987A的中心布满灰尘和气体,遮挡其发出的光线。作者利用模拟了解物质对不同波长的X射线的吸收,从而反推原始发出的光谱。并预测数年后这些物质将散开,较不易遮挡光线,估计再过10年左右将可直接观测到坡霎发出的光,揭露中子星的存在。

  天文学家一直在猜测是否时间不足使中子星形成,抑或形成的是黑洞而不是中子星,SN1987A爆炸后留下的天体数十年来一直是未知谜团,而今新的观测提供更多资讯帮助了解。还需更多的观测资料来支持波霎风星云的存在。假如之后观测到无线电波的增强,伴随着相对高能的X射线减弱,将更能支持中子星的存在。(编译/台北天文馆陈姝蓉)

资料来源:Science News

发布单位:国家航天局

天问一号拍摄的火星彩色照片,上面显示了火星的北极。

  2021年3月4日,国家航天局发布3幅由我国首次火星探测任务天问一号探测器拍摄的高清火星影像图,包括2幅全色图像和1幅彩色图像。

  全色图像由高分辨率相机在距离火星表面约330-350千米高度拍摄,分辨率约0.7米,成像区域内火星表面小型环形坑、山脊、沙丘等地貌清晰可见,据测算,图中最大撞击坑的直径约620米。彩色图像由中分辨率相机拍摄,画面为火星北极区域。

  2月26日起,天问一号在停泊轨道开展科学探测,环绕器高分辨率相机、中分辨率相机、矿物光谱仪等科学载荷陆续开机,获取科学数据。环绕器上的高分辨率相机配置两种成像探测器,能够实现线阵推扫和面阵成像,对重点区域地形地貌开展精细观测。中分辨率相机具备自动曝光和遥控调节曝光功能,能够绘制火星全球遥感影像图,进行火星地形地貌及其变化的探测。

天问一号拍摄的火星黑白照片。
全色图像1

天问一号拍摄的火星黑白照片。
全色图像2

  天问一号任务的最终目标是于5月或6月在火星乌托邦平原(Utopia Planitia)南部登陆一辆火星车——乌托邦平原(~35-50° N; ~80-115° E)是公认的火星上最大的盆地——进行科学考察。

  天问一号是自1960年10月前苏联发射第一艘火星探测器以来,世界上第46次火星探测任务。其中只有19次成功。

发布单位:台北市立天文科学教育馆

  您能在这张令人叹为观止的火星卫星影像中找到毅力号吗?

  2021年2月18日,当NASA的毅力号成功降落在火星杰泽罗陨石坑(Jezero)时,不仅是NASA任务人员胜利地站起来欢呼和鼓掌,国际媒体聚焦,来自世界各地的人们都在收看毅力号登陆的实况转播,接下来的几天,媒体充斥着对于火星表面和这事件相关的报导。

这张最新从高空俯瞰火星的照片,是来自火星微量气体任务卫星(TGO)所拍摄,它是ESA-Roscosmos  ExoMars 计划的一部分,TGO拍到了杰泽罗陨石坑的毅力号。
图1

  这张最新从高空俯瞰火星的照片,是来自火星微量气体任务卫星(TGO)所拍摄,它是ESA-Roscosmos ExoMars计划的一部分,TGO拍到了杰泽罗陨石坑的毅力号。

  自2016年以来,TGO进入了火星轨道,主要任务是收集有关火星大气成分的重要数据。特别是寻找可能是地质或生命活动有关的大气甲烷和其他气体的痕迹,以确定数十亿年前火星上是否有生命存在。

  2月23日,TGO利用其轨道位置的优势,使用彩色和立体表面成像系统 (Colour and Stereo Surface Imaging System,CaSSIS)拍摄了显示杰泽罗陨石坑内的毅力号——以及其降落伞,隔热罩和下降段等机械物件的照片。

TGO所拍摄毅力号着陆点的图像。
图2。TGO所拍摄毅力号着陆点的图像。(ESA)从图1 一系列暗和亮的图像对比中,可辨识出毅力号及它下降时的一些机械物件。

  在这里接下来的两年(可能会延长),毅力将寻找过去微生物存在的迹象。
因为在先前的火星任务中,科学家曾在杰泽罗陨石坑里发现保存完好的河流三角洲和富含粘土的沉积物,数十亿年前,这里可能是个湖泊,是寻找生命的遗迹的好地方。因此,它被选为此次任务的登陆地点。

  毅力还将进行一项雄心勃勃且史无前例的行动,将收集火星岩石和土壤的样本,由一个称为ESA-NASA火星样本返回任务(ESA-NASA Mars Sample Return mission)送返地球,该任务包括一个着陆器,一个火星车(用于取回样本)和小型发射器(用于将它们发射到轨道),届时将由另一艘火星轨道太空船将样本带回地球进行分析。(编译:台北天文馆刘恺俐)

资料来源:Science Alert