发布单位:台北市立天文科学教育馆

  天文学家使用韦伯远镜拍摄北落师门周围温暖的尘埃,发现这些尘埃结构比太阳系的小行星和柯伊伯带要复杂得多,3个嵌套带从恒星延伸至230亿公里,这是地球到太阳距离的150倍,最外层尘埃盘的规模约是柯伊伯带的两倍,而前所未见的内层盘,则由韦伯首次揭示。

  北落师门位于南鱼座,是秋季南天中最明亮的一颗星,距离太阳约25光年。尘埃盘是较大天体碰撞产生的碎片,类似小行星和彗星,常被称为「残屑盘」。研究人员表示北落师门有类似于我们行星系统的成分,若能拍摄到足够深的照片,透过观察这些环,将有助于勾勒出一个行星系统的样子。之前哈勃、赫歇尔太空望远镜及阿塔卡玛大型毫米及次毫米波阵列(ALMA)都曾拍摄过最外层盘的清晰影像,但却从未发现其内部有任何结构。韦伯首次用红外光看到了这些内部区域灰尘产生的热辉光。

由韦伯中红外成像-光谱仪(MIRI)所拍摄围绕着北落师门的残屑盘影像,显示了3个嵌套带,从恒星延伸到230亿公里。右侧突显出来的巨大尘埃云为红外波段影像,分别为23微米和25.5微米。图片来源:NASA, ESA, CSA, A. Gáspár (University of Arizona)。影像处理:A. Pagan (STScI)。This image of the dusty debris disk surrounding the young star Fomalhaut is from Webb’s Mid-Infrared Instrument (MIRI). It reveals three nested belts extending out to 14 billion miles (23 billion kilometers) from the star. The inner belts – which had never been seen before – were revealed by Webb for the first time. Labels at left indicate the individual features. At right, a great dust cloud is highlighted and pullouts show it in two infrared wavelengths: 23 and 25.5 microns. Credits: NASA, ESA, CSA, A. Gáspár (University of Arizona). Image processing: A. Pagan (STScI)
图说:由韦伯中红外成像-光谱仪(MIRI)所拍摄围绕着北落师门的残屑盘影像,显示了3个嵌套带,从恒星延伸到230亿公里。右侧突显出来的巨大尘埃云为红外波段影像,分别为23微米和25.5微米。图片来源:NASA, ESA, CSA, A. Gáspár (University of Arizona)。影像处理:A. Pagan (STScI)。

  哈勃、ALMA和韦伯望远镜正合作对一些恒星周围的残屑盘进行全面的观测。研究团队表示借助哈勃和ALMA可以对类似柯伊伯带的物体进行成像,我们已经了解大量关于外盘如何形成和演化的讯息,但仍需要韦伯对小行星带成像,以了解这些圆盘内部的温暖区域。这些尘埃盘很可能是由看不见的行星产生的引力凋刻而成的,如同太阳系内部,木星包围着小行星带,柯伊伯带的内缘由海王星塑造,而外缘则可能由小行星带之外尚未发现的天体所包围。透过韦伯拍摄到更多的系统,将使我们可以更加了解其行星的配置。

  北落师门的尘埃环于1983年由红外线天文卫星(IRAS)观测时发现。研究人员认为这颗恒星周围可能有一个非常有趣的行星系统,并且从未想过有第二个中间带和更宽的小行星带如此复杂的结构。这种结构非常令人兴奋,因为当天文学家看到圆盘中的缝隙和环时,会认为可能有一颗嵌入的行星在塑造环!

  韦伯还拍摄称之为「大尘埃云」的影像,这可能是两个原行星体在外环发生碰撞的证据,这与2008年哈勃首次在外环内发现的疑似行星不同,随后哈勃在2014年发现该物体已消失。而合理的解释是这个新发现的特征与之前的特征一样,是由两个冰冷的天体相互碰撞而产生非常细小的尘埃颗粒组成不断膨胀的尘埃云。

  围绕恒星原行星盘的想法可追溯到1700年代后期,当时天文学家伊曼努尔‧康德(Immanuel Kant)和皮耶-西蒙·拉普拉斯(Pierre-Simon Laplace)提出星云假说,太阳和行星由旋转的气体云形成,这些气体云由于重力而坍塌变平,随着行星的形成和系统中原始气体的扩散,残屑盘随后形成。像小行星这样的小天体正在发生灾难性的碰撞,并将其表面粉碎成巨大的尘埃云和其他碎片。对其尘埃的观察为系外行星系统的结构提供了独特的线索,可以延伸至地球大小的行星甚至小行星,因这些行星太小而无法单独被看到。相关研究成果发表于《Nature Astronomy》期刊上。(编译/台北天文馆赵瑞青)

资料来源:NASA

(本文共有18人浏览过,今日共有2人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  天文学家使用甚大望远镜(VLT)发现3个非常遥远的气体云,当时宇宙的年龄仅为其当前年龄的10~15%,并且其化学成分与天文学家对第一代恒星爆炸的预期相符。这是我们有史以来第一次在非常遥远的气体云中,识别出第一代恒星爆炸的化学痕迹,这些发现将使我们更加了解大爆炸后第一代恒星的性质。

艺术家对遥远气体云的想像图,其中包含不同的化学元素,用各种原子的示意图来说明。This artist’s impression shows a distant gas cloud that contains different chemical elements, illustrated here with schematic representations of various atoms. Image Credit: L. Calçada / M. Kornmesser / ESO.
图说:艺术家对遥远气体云的想像图,其中包含不同的化学元素,用各种原子的示意图来说明。图片来源:ESO/L. Calçada, M. Kornmesser

  宇宙中形成的第一批恒星,也称为第三星族星,与我们今天看到的恒星非常不同。当它们在135亿年前出现时,只包含了自然界中最简单的化学元素氢和氦,这些恒星的质量约是太阳的数十倍或数百倍,因核融合而产生的重元素,将随着超新星爆炸扩散到太空之中。后代的恒星就是从这些气体中诞生,并在它们死亡时释放出更重的元素。

  根据这些早期恒星的质量和它们爆炸的能量,第一代超新星会释放出不同的化学元素,如存在于恒星外层的碳、氧和镁,但其中一些爆炸的能量不足以释出更重的元素,如只存在于恒星核心的铁。为了寻找这些低能超新星的恒星迹象,将目标对准了贫铁但富含其他元素的遥远气体云。天文学家在遥远的三片气体云中找到了这些特征,它们可以追溯到大爆炸后的头10到20亿年左右,其铁很少但碳和其他元素却很多,这与古代恒星非常吻合。研究人员表示此发现开辟了间接研究第一代恒星性质的新途径,充分补充了我们对银河系中恒星的研究。相关研究成果发表于《The Astrophysical Journal》期刊上。(编译/台北天文馆赵瑞青)

当类星体的光穿过气体云时,其中的化学元素会吸收不同的颜色或波长,从而在类星体的光谱中留下暗线。每种元素都会留下一组不同的谱线。透过研究光谱,天文学家可以计算出中间气体云的化学成分。Credit: ESO/L. Calçada
图说:当类星体的光穿过气体云时,其中的化学元素会吸收不同的颜色或波长,从而在类星体的光谱中留下暗线。每种元素都会留下一组不同的谱线。透过研究光谱,天文学家可以计算出中间气体云的化学成分。图片来源:ESO/L. Calçada

资料来源:SCI NEWS

(本文共有31人浏览过,今日共有1人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  天文学家首次发现,当一颗垂死的恒星吞没并摧毁一颗行星时,就会发出闪光。恒星演化理论模型指出,当恒星进入死亡阶段时,体积会膨胀到原来的几百倍,并吞噬它所经过的一切,然后喷出它的外层物质,之后坍缩成炽热的恒星残骸。

一颗行星围绕母恒星运行(左图),随着时间推移,恒星不断膨胀,影响行星的轨道,直到相互作用产生可探测的光度变化。A planet orbits its star (left), which expands over time, affecting the planet's orbit, eventually growing until the interaction produces detectable changes in light (International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld)
图说:一颗行星围绕母恒星运行(左图),随着时间推移,恒星不断膨胀,影响行星的轨道,直到相互作用产生可探测的光度变化。(图片来源:International Gemini Observatory/NOIRLab/ NSF/AURA/P. Marenfeld)

  这与描述太阳生命结束时的演化模型是一致的。麻省理工学院的天体物理学家Kishalay De说:「我们正在目睹地球的未来,如果其他文明在太阳吞噬地球的时候,从一万光年外观察地球,便会看到由于太阳喷射出一些物质导致突然变亮的闪焰,然后在它周围形成尘埃,接着它又恢复原状。」在太阳系,这个过程预计将在数十亿年后发生,太阳预计会膨胀到火星的轨道,并在途中吞没水星、金星和地球。

  之前的观测捕捉到这些行星被吞噬之前和之后的阶段,但这是首次看到正在吞噬的行为。这颗名为ZTF SLRN-2020的类太阳恒星距离约一万两千光年,被认为吞没了一颗质量约为木星10倍的气态巨行星。这颗恒星的亮度迅速增加了100倍,然后迅速消失,发出明亮且持续很长时间的红外光。

  首先,De由史维基瞬态设施(Zwicky Transient Facility,ZTF)发现这颗恒星在10天内亮度增加100多倍,接着又再次变暗。当这颗恒星吞噬了这颗行星时,它不断膨胀的外壳继续冷却,并在恒星周围形成了尘埃云,这给出了帕洛马山天文台(Palomar Observatory)观测到的长期红外光特征。

  研究人员将这类事件命名为低光度红新星(subluminous red novae),并相信ZTF SLRN-2020可帮助了解行星吞没对后期恒星的亮度、化学成分和旋转速度的影响。他们估计低光度红新星每年会出现0.1到几次,既然知道它们的模样,未来可能会发现更多。该研究已发表在《自然》期刊上。(编译/台北天文馆吴典谚)

资料来源:Science Alert

(本文共有21人浏览过,今日共有1人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  一个国际科学家团队在星系外部观测到分子气体的「冷流」(cold stream),证实了星系内恒星形成的理论,并发表在《科学》期刊上。该团队使用了阿塔卡玛大型毫米及次毫米波阵列(ALMA)的无线电波望远镜阵列来观测冷流,并进一步了解其性质。

宇宙冷气体流和巨大的蚁丘星系相连接。由ALMA探测到的气体流中的碳原子放射以蓝色区块表示。这条气体流从右上角向下延伸,跨越了近50万光年。紫色范围表示蚁丘星系周围聚集了大量气体,而单个的小星系则用灰色表示。为了便于比较,右下角显示了与我们银河系大小相同比例的星系。Cosmic stream of cold gas connected to the massive Anthill Galaxy. Emission from carbon atoms in the stream is highlighted in blue, as detected with the Atacama Large Millimeter/submillimeter Array (ALMA). The stream stretches from the top-right corner downward across almost half a million light-years. The purple colors represent a large reservoir of accumulated gas around the Anthill Galaxy, while individual small galaxies are shown in gray. For comparison, the rendition of a galaxy the size of our Milky Way Galaxy is shown at the same scale in the top-left corner. Credit: B. Emonts (NRAO/AUI/NSF)
图说:宇宙冷气体流和巨大的蚁丘星系相连接。由ALMA探测到的气体流中的碳原子放射以蓝色区块表示。这条气体流从右上角向下延伸,跨越了近50万光年。紫色范围表示蚁丘星系周围聚集了大量气体,而单个的小星系则用灰色表示。为了便于比较,右下角显示了与我们银河系大小相同比例的星系。资料来源:B. Emonts (NRAO/AUI/NSF)

  多年来,太空科学家一直认为,冷气体流在太空中形成,有时会落入星系,在那里它们为恒星的形成提供了食物。由于这些气体流的寒冷特性,要证明理论是正确的一直很困难,因它们的分辨率非常低。此外,它们含盖的范围很广,很难放大观察。尽管存在这些障碍,这项研究还是发现了这样一个气体流,为4C 41.17的星系提供食物的证据。该星系也被称为蚁丘星系(Anthill Galaxy),因为是由许多小星系组成,这些星系最终会在引力作用下合并成一个大质量星系。这是一个非常遥远的星系,距离地球约120亿光年,它的光在大爆炸后大约15亿年出现。因此,对它的观察使我们能够瞥见宇宙历史中非常遥远的阶段。

  为了找到这个气体流,他们必须把ALMA的无线电阵列尽可能靠近拉在一起,这样就可以在观测气体流全貌的同时,也观测到其中的恒星。他们测量出气体流的长度为50万光年。研究人员认为,此气体流主要由碳组成,尽管无法确认其所有成分,也无法确认其来源。他们所能看到的,正如理论所预测的那样,这股冷流正在落入星系内。

  研究人员计划利用ALMA继续研究,或使用新墨西哥州的甚大阵列,希望在气体流中发现在理论上也提到的一氧化碳,并发现更多的特征。(编译/台北天文馆吴典谚)

资料来源:Phys.org

(本文共有41人浏览过,今日共有1人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  我们可以提出的最有趣问题之一是:生命是如何形成的?为了回答这个问题,科学家们回顾了生命的基本化学组成成分,包括水、碳基有机分子、硅酸盐等等。韦伯太空望远镜让我们得以一窥新生恒星周围的气体、冰粒和尘埃,并发现有机分子存在于其中。

  韦伯的数据将改变我们对新形成恒星化学的理解,这是因为韦伯探测到原恒星MIRI 15398-3359周围有机分子的存在,该原恒星位于距离我们约500光年的Lupus 1分子云(也被称为B228)中。韦伯发现吸收特征,表明存在水、甲醇、氨和甲烷冰。此外还有乙醇和乙醛,以及一氧化碳和水蒸气。这些都是复杂的有机分子,可以结合形成生命的基石。

韦伯太空望远镜 (JWST) 获得的原恒星(左上角的橙色区域;与本研究中的原恒星不同)假色图像。JWST使用红外仪器研究原恒星如何形成冰(蓝色)的化学成分。图片来源:NASA、ESA、CSA
图说:韦伯太空望远镜 (JWST) 获得的原恒星(左上角的橙色区域;与本研究中的原恒星不同)假色图像。JWST使用红外仪器研究原恒星如何形成冰(蓝色)的化学成分。图片来源:NASA、ESA、CSA

使用其他分子追踪恒星活动

  由于这是一颗新生的原恒星,它显示出双极喷流,韦伯也发现了铁、氖、硅和氢气等物质的发射谱线。MIRI 15398-3359像许多其他原恒星一样,仍在吸收其它的物质。

  这不是天文学家第一次观测到生命化学物质的原始材料,其他气体和尘埃似乎也显示出这些复杂的化学物质,但是,韦伯的精美数据显示了更多的细节。

形成有机分子

  日本研究机构RIKEN的研究团队分析这颗新形成原恒星的韦伯数据,他们得出结论:这些复杂的有机分子在气体和尘埃中的冰粒表面形成,当原恒星加热这些分子时,它们就会离开冰粒,盘旋进入气体和尘埃 。

  RIKEN的恒星与行星形成实验室的Yao-Lun Yang表示:我们希望获得这种形成途径的明确证据,而韦伯太空望远镜提供了这样的最佳机会。

  为了了解这颗原恒星正在发生的事情,Yang和研究团队使用了韦伯中红外仪器 (MIRI)在2022年的观测数据。这并不是望远镜第一次观察MIRI 15398-3359,之前的观测已经在气相中发现了其中一些化学物质。MIRI更深入地观测气体与尘埃,以识别处于冰相的这些物种。

初见婴儿星

  恒星诞生的过程长期以来一直被这些化学物质所在的尘埃所掩盖,MIRI可以更深入地观测尘埃,它提供了恒星形成过程中更早期的化学演化情形,据Yang表示:这些喷出物可能只有170年的历史,它确实让天文学家很好地了解新生恒星活跃的时间如此之早。对气态和冰形式的复杂有机化学物质的观察也让科学家们更了解恒星诞生地中发生的化学演化。

  随着恒星演化的进展,以及可能在MIRI 15398-3359周围的原恒星盘中形成行星,韦伯应该能够继续观测它。追踪这些行星上生命的形成将需要科学家追踪那些复杂的有机分子从气体到行星表面的持续演化,这是理解从恒星形成到生命诞生的漫长道路上的一个非常有重要的突破。Yang表示:我们将开始了解有机化学是如何出现,还有揭示对于类似太阳系的行星系统之持久影响。(编译/台北天文馆施欣岚)

资料来源:Universe Today

(本文共有33人浏览过,今日共有1人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  银河中心存在一个质量为太阳430万倍的超大质量黑洞,离得太近的恒星可能会被潮汐力撕裂成气体和尘埃流。然而X3a,只有几万年的历史,它距离人马座A星(Sgr A*)如此之近,以至于它的存在挑战了我们对恒星形成和黑洞运作的理解。

  尽管潮汐力及强大的紫外线和X射线会阻止气体聚集成恒星的种子,但X3a不仅存在,而且存在于预测不会形成恒星的地方。

  X3a的半径是太阳的10倍,质量是太阳的15倍,光度是太阳的24,000倍,它不算娇小。

  根据德国科隆大学天体物理学家Florian Peßker领导的研究团队表示:X3a并不是在它所在的位置形成,它形成于离黑洞较远的地方并向内迁移。在距离黑洞几光年的地方有一个区域满足了恒星形成的条件,在这个区域有一圈足够冷的气体和尘埃,并且抵御辐射的破坏。

银河中心的红外图像。An infrared view of the galactic center. (NASA/SOFIA/JPL-Caltech/ESA/Herschel)
图说:银河中心的红外图像。(NASA/SOFIA/JPL-Caltech/ESA/Herschel)

  恒星形成的具体细节仍然是个谜,但我们知道需要满足某些条件。恒星形成于太空中密度大、寒冷的分子云中,当密度更大的团块在自身重力的作用下坍塌、旋转,并开始从周围的分子云中吸引更多物质。超大质量黑洞的邻近区域不被认为是适合这些条件的特别好环境。

  根据该研究团队的分析:X3a可能是在围绕银河系中心的物质环形成。在这个环中,一个更密集的分子云可能聚集在一起,在足够小的区域聚集足够的质量,造成重力坍缩,开始恒星的形成过程。

  这团分子云原本的质量约为100个太阳,它的重力坍缩可能引发了几颗原恒星的形成。

  但是X3a并没有原地踏步,它向人马座A星迁移,在途中,它可能遇到了在同一环境中形成的其他密集的团块,从而使这颗恒星积累更多的质量。

  正是那团名为X3的物质首先引起了天文学家的注意,然后他们才确定了其中的恒星。多台红外和近红外仪器可以辨别出恒星发出的长波光线,这种光可以穿透周围厚厚的尘埃。

  捷克Masaryk大学的天文学家Michal Zajaček表示:X3a的质量大约是太阳质量的10倍,演化速度非常快。我们很幸运地发现了这颗恒星。它拥有年轻恒星相关的关键特征,例如围绕它旋转的密集拱星包层(circumstellar envelope)。

  X3a的发现可以帮助天文学家解开另一个长达数十年的谜团。大约20年前,在人马座A星附近发现了非常年轻的恒星,在此之前人们认为那里只能存在非常古老的恒星。X3a表明:在更远的地方形成年轻恒星,然后向人马座A星迁移,这可能并不是特别罕见的情况。

  而且X3a的状况也可能不会只发生在我们的银河系中。在许多其他星系中发现类似人马座A星的结构,年轻的恒星群可以寄宿。这个概念可能会改变我们对星系核动力学的理解。

  未来的工作将测试该团队的恒星形成模型,不仅适用于银河系,也适用于更广阔的宇宙。

  该研究已发表在《The Astrophysical Journal Letters》上。(编译/台北天文馆施欣岚)

资料来源:Science Alert

(本文共有49人浏览过,今日共有1人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  尽管很悲惨,行星被其母恒星吞噬是整个宇宙的普遍情况。但它不必然以厄运告终。一组天体物理学家团队利用电脑模拟发现,行星不仅可以在被恒星吞噬时存活下来,而且还可以推动恒星的演化。

  行星系统形成的模型表明:许多行星通常最终会被其母恒星吞噬。这只是轨道动力学的问题。新形成的行星与围绕年轻恒星的原行星盘之间的随机交互作用会使行星进入混乱的轨道,其中一些轨迹最终将行星完全赶出行星系统,而其他轨迹则将它们送往母恒星。另一个吞噬的机会发生在恒星生命即将结束时,当恒星变成红巨星时,这也会影响系统的引力动力学,并可能将行星送入其母恒星的大气层。

  但令人惊讶的是,当这种情况发生时,行星并不总是死亡。天文学家在整个银河系中发现了许多奇怪的系统,行星进入恒星后幸存下来。例如,有一些白矮星系统被一颗巨大的行星紧密围绕,由于距离太近,以至于该行星无法自然形成。有些恒星的大气层中含有数量惊人的重元素,这是岩石天体坠入其中的迹象。还有一些恒星自转速度太快,它们的自转速度被坠落的行星加速。

  所有这些系统都可能是恒星吞噬行星,影响恒星进一步演化的结果。但是,行星真的能在恒星的大气层中生存吗?一组天体物理学家团队使用恒星内部的电脑模拟来解决这个问题,追踪可能落入恒星的各种行星的演化和命运。在他们的电脑模拟中,他们研究了各种质量的行星和褐矮星,他们的模拟支持了行星可以在吞噬中幸存下来。

  例如,在某些情况下,行星可以在恒星大气层内公转并存活数千年。这种运动可以甩掉恒星的物质,使大气层的外缘变薄。在其他情况下,轨道能量的交换会提高恒星大气层的温度,使其看起来比正常情况下更亮。

  但为了在吞噬后幸存下来,行星本身必须相对较大,至少要木星的质量,像地球这样的行星是无法生存下来的。如果行星足够大,行星可以加速恒星的演化,从而使恒星迅速结束生命,将行星从致命的拥抱中解放出来。(编译/台北天文馆施欣岚)

资料来源:Universe Today

(本文共有55人浏览过,今日共有2人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  天文学家发现,大小适中的行星只要围绕其母恒星运行的速度够快,就可以减缓恒星的衰老过程。

  研究系外行星对其母恒星旋转的影响有点棘手,如果只单纯观察一颗恒星及行星,基本上人们无法知道它的旋转速度是否受到了行星的影响。然而,宇宙中的许多恒星都是多恒星系统,双星则算是相当常见的系统,它们诞生于同一个星云,来自同一个星际尘埃或气团块,它们的特性通常非常相似,包含颜色、大小、亮度、年龄,甚至是转速。

  为了更深入地研究行星对恒星的影响,科学家寻找的是双星中,其中一颗有系外行星,另一颗则无的特殊系统,接着将无行星的恒星作为对照组,找出另一颗有系外行星的恒星所造成的变化,研究小组仔细检查了34组双星系统中X射线波段的观测资料,他们发现转得快的恒星比转得慢的恒星表现出更多的X射线活动,他们能够以此得知两者的旋转速率差异。

艺术家描绘热木星环绕着母恒星旋转的意象图。
图说:艺术家描绘热木星环绕着母恒星旋转的意象图。

  果不其然,转速较快的恒星都是那些有着热木星(hot Jupiters)的恒星,反之则无或不明显,由于恒星的转速会随着年龄的增长而逐渐减慢,所以年轻的恒星往往较老年恒星旋转得更快,热木星这类的行星就像是恒星的抗氧化剂,它们可以提供角动量的移转,使恒星的转速不至于减少得那么多,但是具体的细节目前还是一个谜,为了便于分析,研究人员先从潮汐力着手,但磁力也可能起作用,进一步的观测可能有助于了解更多此现象,该研究发表于《皇家天文学会月报》上。(编译/台北天文馆技佐许晋翊)

资料来源:Science Alert

(本文共有32人浏览过,今日共有1人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  你知道黄金来自于恒星吗?恒星主要由氢和氦组成,同时包含其他丰富的元素,科学家称为恒星的金属丰度,我们的太阳就是一颗金属丰度很高的恒星,它含有67种不同元素,其中还包含了2.5兆吨的黄金。科学家近期发现一颗包含65种元素的遥远恒星,这是目前为止发现金属丰度仅次于太阳的恒星,其中当然也蕴含了黄金。这颗称恒星名为HD 222925,位于南天的杜鹃座方向,科学家称它为「黄金标准」恒星,可透过它来研究恒星R过程或快速中子捕获过程,以了解恒星如何产生重元素。

  HD 222925是一颗贫金属星(Metal-poor star),意味着它的金属元素含量并不多,但是它的R过程正在增强中。

HD 222925是一颗9等星,位于南天杜鹃座方向。
图说:HD 222925是一颗9等星,位于南天杜鹃座方向。(图片来源:The STScl Digitized Sky Survey)

  针对中子捕获过程可分为两种类型,包含S过程(或称慢速中子捕获过程)和R过程,科学家对S过程已经有很好的理解,但是有关R过程仍存在需多疑问,直到2019年观测到两颗中子星合并产生千级新星(kilonova)爆炸,在其残骸中发现锶,证明了在中子星碰撞后制造重元素。

2019年发现在中子星合并中形成锶元素的示意图。
图说:2019年发现在中子星合并中形成锶元素的示意图。(图片出处:ESO/L. Calcada/M. Kornmesser)

  快速中子捕获过程使得原子核能够在中子衰变前捕获中子,而产生重元素。R过程从比铁轻的元素开始,在具有大量中子和能量的环境中,因为中子属于中性不带电荷,所以中子可以快速被捕获。当一个原子捕获一个中子时,会发射一个电子,使中子转化成质子,并提高其原子序,此过程将较轻的元素变成较重的元素,这些较重的元素,包含了稀有的黄金。因为促进R过程的事件并不多见,也使得黄金等较重元素变得稀有,这也是HD 222925成为「黄金标准」恒星的原因。

  科学家认为中子星合并产生千级新星爆炸及大质量恒星的超新星爆炸都可以促使R过程,对科学家理解R过程非常重要。密西根大学罗德勒(Ian U. Roederer)教授认为了解R过程发生的环境或过程是他们团队的研究目的。

  研究团队认为HD 222925没有产生它所含有的重元素,它所含有的重元素是早期超新星或千级新星爆炸的残骸散播于太空中,HD 222925形成时吸收了这些的重元素。研究团队中麻省理工学院的Anna Frebel教授试图透过数值模拟其发生的过程及产生的元素。

  研究团队表示R过程是恒星及其残骸物质产生原子序大于30的重元素方法之一。近期观测又证实,R过程亦会发生于中子星合并及千级新星爆炸过程中,但仍有一些悬而未决的疑问,例如其过程产生哪些元素及其含量多少?

HD 222925中发现的元素种类。
图说:HD 222925中发现的元素种类。(图片来源:Roederer等人)

  R过程联盟(R-Process Alliance)成立的目的为解答这些R过程的疑问,本团队部分研究员是该联盟的成员,研究人员认为HD 222925是在R过程丰富的环境中形成的恒星之一,它的金属丰度高于多数已知通过R过程形成的恒星,可能来自于多个超新星。这表明HD 222925可能不是银河系的一部分,可能是在过去某个时段,被银河系捕获的恒星。HD 222925的化学丰度模型中,除了R过程元素丰度整体提高外,并没有异常的特征。本篇论文已经在天体物理学杂志增刊系列中发表,原文可以在arxiv.org下载。(编辑:台北天文馆林琦峯)

资料来源:Universe Today

(本文共有16人浏览过,今日共有1人浏览过,欢迎多加利用!)

发布单位:台北市立天文科学教育馆

  以往天文学家认为来自银河系中心的神秘伽马射线源自于暗物质,现在澳大利亚国立大学(ANU)的研究团队找到了新的解释。

  大约在十年前,天文学家使用NASA费米伽马射线太空望远镜(GLAST)测量银河系中心时,发现一种高能的光超出了他们所能解释的范围,即所谓的银河系中心过剩(GCE),此现象长期以来一直困扰着天文学家。现今澳大利亚国立大学的研究表示这种特殊的伽马射线讯号,实际上可能来自一种特定类型快速旋转的中子星。

  研究人员发现它可能来自于毫秒脉冲星,一种旋转速度非常快,大约每秒可旋转100次的中子星。在此之前天文学家就曾在太阳系附近探测到单个毫秒脉冲星的伽马射线发射,所以知道这些天体会发射伽马射线。而从研究团队的模型显示,数量约10万颗此类恒星的整体发射量,将可以产生与银河系中心过剩完全一致的讯号。

  这个发现意味着科学家必须重新考虑要在哪里寻找关于暗物质的线索,也因为我们完全不了解暗物质的性质,所以任何潜在的线索都会让科学家感到激动不已。而此次的研究结果显示了产生伽马射线的另一个重要来源,例如离我们最近的仙女座星系其伽马射线讯号可能主要也来自于毫秒脉冲星。该研究成果发表于《Nature Astronomy》期刊上。(编译/台北天文馆赵瑞青)

费米伽马射线太空望远镜所拍摄银河系伽马射线图像。图片来源:NASA/DOE/Fermi LAT
费米伽马射线太空望远镜所拍摄银河系伽马射线图像。图片来源:NASA/DOE/Fermi LAT

资料来源:The Australian National University

(本文共有5人浏览过,今日共有1人浏览过,欢迎多加利用!)