韦伯测量到系外岩石行星的温度

发布单位:台北市立天文科学教育馆

  TRAPPIST-1是一颗超冷红矮星,位于宝瓶座,距离我们约40光年。这颗恒星仅比木星大一点,质量约为太阳的8%。2017年初,天文学家宣布这颗恒星拥有7颗岩石行星,这些行星的大小和质量都与太阳系内的岩石行星相似,但却更加靠近它们的恒星,轨道周期都非常短。

  这些行星中有3颗位于该恒星的适居带,这表示它们可能拥有适合生命存在的条件。其中TRAPPIST-1b是最靠近母恒星的行星,其轨道约为地球到太阳距离的百分之一,接收的能量约是地球从太阳获得能量的4倍。根据韦伯中红外成像-光谱仪(MIRI)的数据分析,其白天的温度约为摄氏227度。虽然它并非位于适居带中,但对此行星的观测可以提供有关其兄弟行星,以及其他红矮星系统重要的讯息。

将韦伯MIRI测量到TRAPPIST-1b白天温度与各种条件下温度的电脑模型进行比对。图片来源:NASA、ESA、CSA、J. Olmsted (STScI)
图说:将韦伯MIRI测量到TRAPPIST-1b白天温度与各种条件下温度的电脑模型进行比对。图片来源:NASA、ESA、CSA、J. Olmsted (STScI)

  研究人员表示银河系中此类恒星的数量是太阳般恒星的10倍,它们拥有岩石行星的可能性是太阳般恒星的2倍。它们也非常活跃,年轻时非常明亮,发出的闪焰和X射线可以摧毁大气层。如果我们想了解红矮星周围的适居性,TRAPPIST-1系统是一个很棒的实验室,是我们观察岩石行星大气层的最佳目标。之前使用哈勃和史匹哲太空望远镜对TRAPPIST-1b观测时,没有发现大气层存在的证据,但无法排除存在浓密大气层的可能性,而减少不确定性方法是测量该行星的温度。此行星因潮汐锁定,因此一侧恒面向恒星,而另一侧则始终处于黑暗。大气层可以用来循环和重新分配热量,如果它拥有大气层,那么白天那一侧的温度将会比没有大气层时来的凉爽。

  当行星从它的恒星后面经过时,这种只观察到来自恒星光的现象称为次食(secondary eclipse)。天文学家使用次食光度法( secondary eclipse photometry),测量了TRAPPIST-1系统的亮度变化。虽然 TRAPPIST-1b的温度不足以发出可见光,但它确实会发出红外光。透过恒星和行星的总亮度减去恒星自身(在次食期间)的亮度,天文学家可以成功地计算出行星发出了多少红外光。由于恒星比行星亮1,000多倍,亮度变化小于0.1%,韦伯探测到次食本身就是一个重要的里程碑。团队分析了来自5个独立的次食观测数据,将结果与显示在不同情况下温度应该是多少的电脑模型进行比对,结果与由裸露岩石构成的黑体几乎完全一致,没有大气来循环热量,也没有看到任何光被二氧化碳吸收的迹象。

显示行星TRAPPIST-1b移动到恒星后面时TRAPPIST-1系统的亮度变化。当行星在恒星旁,恒星和行星日侧发出的光都到达望远镜,系统显得更亮。但当行星位在恒星后面时,行星发出的光被阻挡,只有星光到达望远镜,导致亮度降低。图片来源:NASA、ESA、CSA、J. Olmsted (STScI)
图说:显示行星TRAPPIST-1b移动到恒星后面时TRAPPIST-1系统的亮度变化。当行星在恒星旁,恒星和行星日侧发出的光都到达望远镜,系统显得更亮。但当行星位在恒星后面时,行星发出的光被阻挡,只有星光到达望远镜,导致亮度降低。图片来源:NASA、ESA、CSA、J. Olmsted (STScI)

  TRAPPIST-1b的其他次食观测正在进行中,希望最终能捕捉到一个完整的轨道亮度变化相位曲线,这将使他们能够看到温度从白天到夜晚的变化,并确认该行星是否有大气层。这是我们第一次能够探测到来自岩石行星的辐射,这将是发现系外行星非常重要的一步。相关研究成果将发表于《Nature》期刊上。(编译/台北天文馆赵瑞青)

资料来源:NASA

生成海报
(本文共有5人浏览过,今日共有1人浏览过,欢迎多加利用!)

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注